12,019 research outputs found
Heat addition to a subsonic boundary layer: A preliminary analytical study
A preliminary analytical study of the effects of heat addition to the subsonic boundary layer flow over a typical airfoil shape is presented. This phenomenon becomes of interest in the space shuttle mission since heat absorbed by the wing structure during re-entry will be rejected to the boundary layer during the subsequent low speed maneuvering and landing phase. A survey of existing literature and analytical solutions for both laminar and turbulent flow indicate that a heated surface generally destabilizes the boundary layer. Specifically, the boundary layer thickness is increased, the skin friction at the surface is decreased and the point of flow separation is moved forward. In addition, limited analytical results predict that the angle of attack at which a heated airfoil will stall is significantly less than the stall angle of an unheated wing. These effects could adversely affect the lift and drag, and thus the maneuvering capabilities of booster and orbiter shuttle vehicles
Principles of Discrete Time Mechanics: IV. The Dirac Equation, Particles and Oscillons
We apply the principles of discrete time mechanics discussed in earlier
papers to the first and second quantised Dirac equation. We use the Schwinger
action principle to find the anticommutation relations of the Dirac field and
of the particle creation operators in the theory. We find new solutions to the
discrete time Dirac equation, referred to as oscillons on account of their
extraordinary behaviour. Their principal characteristic is that they oscillate
with a period twice that of the fundamental time interval T of our theory.
Although these solutions can be associated with definite charge, linear
momentum and spin, such objects should not be observable as particles in the
continuous time limit. We find that for non-zero T they correspond to states
with negative squared norm in Hilbert space. However they are an integral part
of the discrete time Dirac field and should play a role in particle
interactions analogous to the role of longitudinal photons in conventional
quantum electrodynamics.Comment: 27 pages LateX; published versio
Matrix Adhesion Polarizes Heart Progenitor Induction In The Invertebrate Chordate Ciona Intestinalis
Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification
Evidence for polar jets as precursors of polar plume formation
Observations from the Hinode/XRT telescope and STEREO/SECCHI/EUVI are
utilized to study polar coronal jets and plumes. The study focuses on the
temporal evolution of both structures and their relationship. The data sample,
spanning April 7-8 2007, shows that over 90% of the 28 observed jet events are
associated with polar plumes. EUV images (STEREO/SECCHI) show plume haze rising
from the location of approximately 70% of the polar X-ray (Hinode/XRT) and EUV
jets, with the plume haze appearing minutes to hours after the jet was
observed. The remaining jets occurred in areas where plume material previously
existed causing a brightness enhancement of the latter after the jet event.
Short-lived, jet-like events and small transient bright points are seen (one at
a time) at different locations within the base of pre-existing long-lived
plumes. X-ray images also show instances (at least two events) of
collimated-thin jets rapidly evolving into significantly wider plume-like
structures that are followed by the delayed appearance of plume haze in the
EUV. These observations provide evidence that X-ray jets are precursors of
polar plumes, and in some cases cause brightenings of plumes. Possible
mechanisms to explain the observed jet and plume relationship are discussed.Comment: 10 pages, 4 figures, accepted as APJ Lette
Energy Requirement of Control: Comments on Szilard's Engine and Maxwell's Demon
In mathematical physical analyses of Szilard's engine and Maxwell's demon, a
general assumption (explicit or implicit) is that one can neglect the energy
needed for relocating the piston in Szilard's engine and for driving the trap
door in Maxwell's demon. If this basic assumption is wrong, then the
conclusions of a vast literature on the implications of the Second Law of
Thermodynamics and of Landauer's erasure theorem are incorrect too. Our
analyses of the fundamental information physical aspects of various type of
control within Szilard's engine and Maxwell's demon indicate that the entropy
production due to the necessary generation of information yield much greater
energy dissipation than the energy Szilard's engine is able to produce even if
all sources of dissipation in the rest of these demons (due to measurement,
decision, memory, etc) are neglected.Comment: New, simpler and more fundamental approach utilizing the physical
meaning of control-information and the related entropy production. Criticism
of recent experiments adde
Predicting critical power in elite cyclists: questioning validity of the 3-min All-out test
Purpose: New applications of the critical power concept, such as the modelling of intermittent work capabilities, are exciting prospects for elite cycling. However, accurate calculation of the required parameters is traditionally time invasive and somewhat impractical. An alternative single test protocol (3-min All-out) has recently been proposed, but validation in an elite population is lacking. The traditional approach for parameter establishment, but with fewer tests, could also prove an acceptable compromise. Methods: Six senior Australian endurance track cycling representatives completed six efforts to exhaustion on two separate days over a three week period. These included 1, 4, 6, 8 and 10 minute self-paced efforts, plus the 3-min All-out protocol. Traditional work versus time calculations of CP and W’ using the five self-paced efforts were compared to calculations from the 3-min All-out protocol. The impact of using just two or three self-paced efforts for traditional CP and W’ estimation were also explored using thresholds of agreement (8W, 2.0kJ respectively). Results: CP estimated from the 3-min All-out approach was significantly higher than from the traditional approach (402±33W, 351±27W, p<0.001), whilst W’ was lower (15.5±3.0kJ, 24.3±4.0kJ, p=0.02). Five different combinations of two or three self-paced efforts led to CP estimates within the threshold of agreement, with only one combination deemed accurate for W’. Conclusions: In elite cyclists the 3-min All-out approach is not suitable to estimate CP when compared to the traditional method. However, reducing the number of tests used in the traditional method lessens testing burden whilst maintaining appropriate parameter accuracy.Jason C Bartram, Dominic Thewlis, David T Martin, Kevin I Norto
Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler
The focusing properties of three aspheric lenses with numerical aperture (NA)
between 0.53 and 0.68 were directly measured using an interferometrically
referenced scanning knife-edge beam profiler with sub-micron resolution. The
results obtained for two of the three lenses tested were in agreement with
paraxial gaussian beam theory. It was also found that the highest NA aspheric
lens which was designed for 830nm was not diffraction limited at 633nm. This
process was automated using motorized translation stages and provides a direct
method for testing the design specifications of high numerical aperture optics.Comment: 6 pages 4 figure
Effects of soft foam insulation impact
High temperature reusable surface insulation (HTRSI) tiles were impacted by a variety of foam insulation materials typical of the debris expected to strike the shuttle orbiter during the initial phases of flight. Failure of the HIRSI coating was strongly dependent on the density and size of the projectile. The failure threshold was as low as 140 ft/sec for rubber and as high as 740 ft/sec for styrofoam. In addition, the impact pressure was measured for a variety of debris materials as a function of velocity
Applications of the AVE-Sesame data sets to mesoscale studies
Data collected by the lightning data concentrator are available for research. The Mark 3 McIDAS capability provides greater flexibility for the Marshall user community and serves as a model of future UW McIDAS to remote computer links. Techniques were investigated for the display of dynamic 3-D data sets. To date the most promising display technology is a polarized two CRT perspective display which allows both dynamic 3-D images and graphics presentations with full color capability. Algorithms were for the preparation and display of conventional and satellite based weather data in 3-D. These include gridding, contouring, and streamlining processors which operate on both real time and case study data bases. An upper air trajectory model was implemented which creates a display of air parcel trajectories in perspective 3-D. A subsystem for the generation of 3-D solid surface display with shading and hidden surface display with shading and hidden surface removal was tested and its products are currently being evaluated. Motion parallax introduced by moving the point of observation during display is an important depth cue, which, when added to the perspective parallax creates a very realistic appearing display
The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Optimization of the Spectral Line Inversion Code
The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington
spectral line inversion code used to determine the magnetic and thermodynamic
parameters of the solar photosphere from observations of the Stokes vector in
the 6173 A Fe I line by the Helioseismic and Magnetic Imager (HMI) onboard the
Solar Dynamics Observatory (SDO). We report on the modifications made to the
original VFISV inversion code in order to optimize its operation within the HMI
data pipeline and provide the smoothest solution in active regions. The changes
either sped up the computation or reduced the frequency with which the
algorithm failed to converge to a satisfactory solution. Additionally, coding
bugs which were detected and fixed in the original VFISV release, are reported
here.Comment: Accepted for publication in Solar Physic
- …