6,609 research outputs found

    Ground-state phase diagram of the spin-1/2 square-lattice J1-J2 model with plaquette structure

    Full text link
    Using the coupled cluster method for high orders of approximation and Lanczos exact diagonalization we study the ground-state phase diagram of a quantum spin-1/2 J1-J2 model on the square lattice with plaquette structure. We consider antiferromagnetic (J1>0) as well as ferromagnetic (J1<0) nearest-neighbor interactions together with frustrating antiferromagnetic next-nearest-neighbor interaction J2>0. The strength of inter-plaquette interaction lambda varies between lambda=1 (that corresponds to the uniform J1-J2 model) and lambda=0 (that corresponds to isolated frustrated 4-spin plaquettes). While on the classical level (s \to \infty) both versions of models (i.e., with ferro- and antiferromagnetic J1) exhibit the same ground-state behavior, the ground-state phase diagram differs basically for the quantum case s=1/2. For the antiferromagnetic case (J1 > 0) Neel antiferromagnetic long-range order at small J2/J1 and lambda \gtrsim 0.47 as well as collinear striped antiferromagnetic long-range order at large J2/J1 and lambda \gtrsim 0.30 appear which correspond to their classical counterparts. Both semi-classical magnetic phases are separated by a nonmagnetic quantum paramagnetic phase. The parameter region, where this nonmagnetic phase exists, increases with decreasing of lambda. For the ferromagnetic case (J1 < 0) we have the trivial ferromagnetic ground state at small J2/|J1|. By increasing of J2 this classical phase gives way for a semi-classical plaquette phase, where the plaquette block spins of length s=2 are antiferromagnetically long-range ordered. Further increasing of J2 then yields collinear striped antiferromagnetic long-range order for lambda \gtrsim 0.38, but a nonmagnetic quantum paramagnetic phase lambda \lesssim 0.38.Comment: 10 pages, 15 figure

    Space power distribution system technology. Volume 2: Autonomous power management

    Get PDF
    Electrical power subsystem requirements, power management system functional requirements, algorithms, power management subsystem, hardware development, and trade studies and analyses are discussed

    Field theoretic description of charge regulation interaction

    Full text link
    In order to find the exact form of the electrostatic interaction between two proteins with dissociable charge groups in aqueous solution, we have studied a model system composed of two macroscopic surfaces with charge dissociation sites immersed in a counterion-only ionic solution. Field-theoretic representation of the grand canonical partition function is derived and evaluated within the mean-field approximation, giving the Poisson-Boltzmann theory with the Ninham-Parsegian boundary condition. Gaussian fluctuations around the mean-field are then analyzed in the lowest order correction that we calculate analytically and exactly, using the path integral representation for the partition function of a harmonic oscillator with time-dependent frequency. The first order (one loop) free energy correction gives the interaction free energy that reduces to the zero-frequency van der Waals form in the appropriate limit but in general gives rise to a mono-polar fluctuation term due to charge fluctuation at the dissociation sites. Our formulation opens up the possibility to investigate the Kirkwood-Shumaker interaction in more general contexts where their original derivation fails.Comment: 12 pages, 9 figures, submitted to EPJ

    One-dimensional metallic behavior of the stripe phase in La2x_{2-x}Srx_xCuO4_4

    Full text link
    Using an exact diagonalization method within the dynamical mean-field theory we study stripe phases in the two-dimensional Hubbard model. We find a crossover at doping δ0.05\delta\simeq 0.05 from diagonal stripes to vertical site-centered stripes with populated domain walls, stable in a broad range of doping, 0.05<δ<0.170.05<\delta<0.17. The calculated chemical potential shift δ2\propto -\delta^2 and the doping dependence of the magnetic incommensurability are in quantitative agreement with the experimental results for doped La2x_{2-x}Srx_xCuO4_4. The electronic structure shows one-dimensional metallic behavior along the domain walls, and explains the suppression of spectral weight along the Brillouin zone diagonal.Comment: 4 pages, 4 figure

    Space power distribution system technology. Volume 1: Reference EPS design

    Get PDF
    The multihundred kilowatt electrical power aspects of a mannable space platform in low Earth orbit is analyzed from a cost and technology viewpoint. At the projected orbital altitudes, Shuttle launch and servicing are technically and economically viable. Power generation is specified as photovoltaic consistent with projected planning. The cost models and trades are based upon a zero interest rate (the government taxes concurrently as required), constant dollars (1980), and costs derived in the first half of 1980. Space platform utilization of up to 30 years is evaluated to fully understand the impact of resupply and replacement as satellite missions are extended. Such lifetimes are potentially realizable with Shuttle servicing capability and are economically desirable

    Quantum Dot Potentials: Symanzik Scaling, Resurgent Expansions and Quantum Dynamics

    Get PDF
    This article is concerned with a special class of the ``double-well-like'' potentials that occur naturally in the analysis of finite quantum systems. Special attention is paid, in particular, to the so-called Fokker-Planck potential, which has a particular property: the perturbation series for the ground-state energy vanishes to all orders in the coupling parameter, but the actual ground-state energy is positive and dominated by instanton configurations of the form exp(-a/g), where a is the instanton action. The instanton effects are most naturally taken into account within the modified Bohr-Sommerfeld quantization conditions whose expansion leads to the generalized perturbative expansions (so-called resurgent expansions) for the energy values of the Fokker-Planck potential. Until now, these resurgent expansions have been mainly applied for small values of coupling parameter g, while much less attention has been paid to the strong-coupling regime. In this contribution, we compare the energy values, obtained by directly resumming generalized Bohr-Sommerfeld quantization conditions, to the strong-coupling expansion, for which we determine the first few expansion coefficients in powers of g^(-2/3). Detailed calculations are performed for a wide range of coupling parameters g and indicate a considerable overlap between the regions of validity of the weak-coupling resurgent series and of the strong-coupling expansion. Apart from the analysis of the energy spectrum of the Fokker-Planck Hamiltonian, we also briefly discuss the computation of its eigenfunctions. These eigenfunctions may be utilized for the numerical integration of the (single-particle) time-dependent Schroedinger equation and, hence, for studying the dynamical evolution of the wavepackets in the double-well-like potentials.Comment: 13 pages; RevTe

    Quantum signatures in laser-driven relativistic multiple-scattering

    Full text link
    The dynamics of an electronic Dirac wave packet evolving under the influence of an ultra-intense laser pulse and an ensemble of highly charged ions is investigated numerically. Special emphasis is placed on the evolution of quantum signatures from single to multiple scattering events. We quantify the occurrence of quantum relativistic interference fringes in various situations and stress their significance in multiple-particle systems, even in the relativistic range of laser-matter interaction.Comment: 4 pages, 2 figures, LaTeX, revtex

    Deconfinement in the Quark Meson Coupling Model

    Get PDF
    The Quark Meson Coupling Model which describes nuclear matter as a collection of non-overlapping MIT bags interacting by the self-consistent exchange of scalar and vector mesons is used to study nuclear matter at finite temperature. In its modified version, the density dependence of the bag constant is introduced by a direct coupling between the bag constant and the scalar mean field. In the present work, the coupling of the scalar mean field with the constituent quarks is considered exactly through the solution of the Dirac equation. Our results show that a phase transition takes place at a critical temperature around 200 MeV in which the scalar mean field takes a nonzero value at zero baryon density. Furthermore it is found that the bag constant decreases significantly when the temperature increases above this critical temperature indicating the onset of quark deconfinement.Comment: LaTeX/TeX 15 pages (zk2.tex)+ 6 figures in TeX forma
    corecore