5 research outputs found

    Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring

    No full text
    In mice, the maternal microbiome influences fetal immune development and postnatal allergic outcomes. Westernized populations have high rates of allergic disease and low rates of gastrointestinal carriage of Prevotella, a commensal bacterial genus that produces short chain fatty acids and endotoxins, each of which may promote the development of fetal immune tolerance. In this study, we use a prebirth cohort (n = 1064 mothers) to conduct a nested case-cohort study comparing 58 mothers of babies with clinically proven food IgE mediated food allergy with 258 randomly selected mothers. Analysis of the V4 region of the 16S rRNA gene in fecal samples shows maternal carriage of Prevotella copri during pregnancy strongly predicts the absence of food allergy in the offspring. This association was confirmed using targeted qPCR and was independent of infant carriage of P. copri. Larger household size, which is a well-established protective factor for allergic disease, strongly predicts maternal carriage of P. copri

    Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring

    No full text
    In mice, the maternal microbiome influences fetal immune development and postnatal allergic outcomes. Westernized populations have high rates of allergic disease and low rates of gastrointestinal carriage of Prevotella, a commensal bacterial genus that produces short chain fatty acids and endotoxins, each of which may promote the development of fetal immune tolerance. In this study, we use a prebirth cohort (n = 1064 mothers) to conduct a nested case-cohort study comparing 58 mothers of babies with clinically proven food IgE mediated food allergy with 258 randomly selected mothers. Analysis of the V4 region of the 16S rRNA gene in fecal samples shows maternal carriage of Prevotella copri during pregnancy strongly predicts the absence of food allergy in the offspring. This association was confirmed using targeted qPCR and was independent of infant carriage of P. copri. Larger household size, which is a well-established protective factor for allergic disease, strongly predicts maternal carriage of P. copri

    Genomic data from the potato

    No full text
    Available here is the genome of the potato (Solanum tuberosum L.), the first genome sequenced from the asterid clade. Potato is a member of the Solanaceae, a plant family that includes many other economically important species, such as tomato, petunia, eggplant, tobacco, and pepper. As the potato is both clonally propagated and the world;s most important non-grain food crop, its genome is a valuable agricultural resource. The Potato Genome Sequencing Consortium sequenced two species: the heterozygous diploid S. tuberosum Group Tuberosum cultivar, RH89-039-16 (RH), and the doubled monoploid S. tuberosum Group Phureja clone DM1-3 516R44 (DM). The potato genome consists of 12 chromosomes, of which over 80% of the homozygous clone’s 844-megabase genome were assembled. Genome analysis revealed evidence of at least two genome duplication events and identified a number of asterid-specific genes. Comparison between the two clones identified frequent gene variations and mutations, which may cause inbreeding depression
    corecore