1,606 research outputs found

    Bench-to-bedside review: The importance of the precision of the reference technique in method comparison studies - with specific reference to the measurement of cardiac output

    Get PDF
    Bland-Altman analysis is used for assessing agreement between two measurements of the same clinical variable. In the field of cardiac output monitoring, its results, in terms of bias and limits of agreement, are often difficult to interpret, leading clinicians to use a cutoff of 30% in the percentage error in order to decide whether a new technique may be considered a good alternative. This percentage error of ± 30% arises from the assumption that the commonly used reference technique, intermittent thermodilution, has a precision of ± 20% or less. The combination of two precisions of ± 20% equates to a total error of ± 28.3%, which is commonly rounded up to ± 30%. Thus, finding a percentage error of less than ± 30% should equate to the new tested technique having an error similar to the reference, which therefore should be acceptable. In a worked example in this paper, we discuss the limitations of this approach, in particular in regard to the situation in which the reference technique may be either more or less precise than would normally be expected. This can lead to inappropriate conclusions being drawn from data acquired in validation studies of new monitoring technologies. We conclude that it is not acceptable to present comparison studies quoting percentage error as an acceptability criteria without reporting the precision of the reference technique

    Inelastic hard-rods in a periodic potential

    Full text link
    A simple model of inelastic hard-rods subject to a one-dimensional array of identical wells is introduced. The energy loss due to inelastic collisions is balanced by the work supplied by an external stochastic heat-bath. We explore the effect of the spatial non uniformity on the steady states of the system. The spatial variations of the density, granular temperature and pressure induced by the gradient of the external potential are investigated and compared with the analogous variations in an elastic system. Finally, we study the clustering process by considering the relaxation of the system starting from a uniform homogeneous state.Comment: RevTex4, 10 pages, 14 eps-figures, new versio

    Macroscopic evidence of microscopic dynamics in the Fermi-Pasta-Ulam oscillator chain from nonlinear time series analysis

    Full text link
    The problem of detecting specific features of microscopic dynamics in the macroscopic behavior of a many-degrees-of-freedom system is investigated by analyzing the position and momentum time series of a heavy impurity embedded in a chain of nearest-neighbor anharmonic Fermi-Pasta-Ulam oscillators. Results obtained in a previous work [M. Romero-Bastida, Phys. Rev. E {\bf69}, 056204 (2004)] suggest that the impurity does not contribute significantly to the dynamics of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. The (r,τr,\tau) entropy, which measures the amount of information generated by unit time at different scales τ\tau of time and rr of the observable, is numerically computed by methods of nonlinear time-series analysis using the position and momentum signals of the heavy impurity for various values of the energy density ϵ\epsilon (energy per degree of freedom) of the system and some values of the impurity mass MM. Results obtained from these two time series are compared and discussed.Comment: 7 pages, 5 figures, RevTeX4 PRE format; to be published in Phys. Rev.

    N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice

    Full text link
    The N-tree approximation scheme, introduced in the context of random directed polymers, is here applied to the computation of the maximum Lyapunov exponent in a coupled map lattice. We discuss both an exact implementation for small tree-depth nn and a numerical implementation for larger nns. We find that the phase-transition predicted by the mean field approach shifts towards larger values of the coupling parameter when the depth nn is increased. We conjecture that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure

    Noise activated granular dynamics

    Full text link
    We study the behavior of two particles moving in a bistable potential, colliding inelastically with each other and driven by a stochastic heat bath. The system has the tendency to clusterize, placing the particles in the same well at low drivings, and to fill all of the available space at high temperatures. We show that the hopping over the potential barrier occurs following the Arrhenius rate, where the heat bath temperature is replaced by the granular temperature. Moreover, within the clusterized ``phase'' one encounters two different scenarios: for moderate inelasticity, the jumps from one well to the other involve one particle at a time, whereas for strong inelasticity the two particles hop simultaneously.Comment: RevTex4, 4 pages, 4 eps figures, Minor revisio

    Directed deterministic classical transport: symmetry breaking and beyond

    Full text link
    We consider transport properties of a double delta-kicked system, in a regime where all the symmetries (spatial and temporal) that could prevent directed transport are removed. We analytically investigate the (non trivial) behavior of the classical current and diffusion properties and show that the results are in good agreement with numerical computations. The role of dissipation for a meaningful classical ratchet behavior is also discussed.Comment: 10 pages, 20 figure

    Short period attractors and non-ergodic behavior in the deterministic fixed energy sandpile model

    Get PDF
    We study the asymptotic behaviour of the Bak, Tang, Wiesenfeld sandpile automata as a closed system with fixed energy. We explore the full range of energies characterizing the active phase. The model exhibits strong non-ergodic features by settling into limit-cycles whose period depends on the energy and initial conditions. The asymptotic activity ρa\rho_a (topplings density) shows, as a function of energy density ζ\zeta, a devil's staircase behaviour defining a symmetric energy interval-set over which also the period lengths remain constant. The properties of ζ\zeta-ρa\rho_a phase diagram can be traced back to the basic symmetries underlying the model's dynamics.Comment: EPL-style, 7 pages, 3 eps figures, revised versio

    Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators

    Full text link
    The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anharmonic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the impurity mass MM. A crossover between weak and strong chaos is obtained at the same value ϵT\epsilon_{_T} of the energy density ϵ\epsilon (energy per degree of freedom) for all the considered values of the impurity mass MM. The threshold \epsi lon_{_T} coincides with the value of the energy density ϵ\epsilon at which a change of scaling of the relaxation time of the momentum autocorrelation function of the impurity ocurrs and that was obtained in a previous work ~[M. Romero-Bastida and E. Braun, Phys. Rev. E {\bf65}, 036228 (2002)]. The complete Lyapunov spectrum does not depend significantly on the impurity mass MM. These results suggest that the impurity does not contribute significantly to the dynamical instability (chaos) of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the chain has a crossover from weak to strong chaos at the same value of the energy density that the crossover value ϵT\epsilon_{_T} of largest Lyapunov exponent. Implications of this result are discussed.Comment: 6 pages, 5 figures, revtex4 styl

    Diffusion, super-diffusion and coalescence from single step

    Full text link
    From the exact single step evolution equation of the two-point correlation function of a particle distribution subjected to a stochastic displacement field \bu(\bx), we derive different dynamical regimes when \bu(\bx) is iterated to build a velocity field. First we show that spatially uncorrelated fields \bu(\bx) lead to both standard and anomalous diffusion equation. When the field \bu(\bx) is spatially correlated each particle performs a simple free Brownian motion, but the trajectories of different particles result to be mutually correlated. The two-point statistical properties of the field \bu(\bx) induce two-point spatial correlations in the particle distribution satisfying a simple but non-trivial diffusion-like equation. These displacement-displacement correlations lead the system to three possible regimes: coalescence, simple clustering and a combination of the two. The existence of these different regimes, in the one-dimensional system, is shown through computer simulations and a simple theoretical argument.Comment: RevTeX (iopstyle) 19 pages, 5 eps-figure
    corecore