65 research outputs found

    Secular trends in pediatric antiretroviral treatment programs in rural and urban Zambia: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since 2003 pediatric antiretroviral treatment (ART) programs have scaled-up in sub-Saharan Africa and should be evaluated to assess progress and identify areas for improvement. We evaluated secular trends in the characteristics and treatment outcomes of children in three pediatric ART clinics in urban and rural areas in Zambia.</p> <p>Methods</p> <p>Routinely collected data were analyzed from three ART programs in rural (Macha and Mukinge) and urban (Lusaka) Zambia between program implementation and July 2008. Data were obtained from electronic medical record systems and medical record abstraction, and were categorized by year of program implementation. Characteristics of all HIV-infected and exposed children enrolled in the programs and all children initiating treatment were compared by year of implementation.</p> <p>Results</p> <p>Age decreased and immunologic characteristics improved in all groups over time in both urban and rural clinics, with greater improvement observed in the rural clinics. Among children both eligible and ineligible for ART at clinic enrollment, the majority started treatment within a year. A high proportion of children, particularly those ineligible for ART at clinic enrollment, were lost to follow-up prior to initiating ART. Among children initiating ART, clinical and immunologic outcomes after six months of treatment improved in both urban and rural clinics. In the urban clinics, mortality after six months of treatment declined with program duration, and in the rural clinics, the proportion of children defaulting by six months increased with program duration.</p> <p>Conclusions</p> <p>Treatment programs are showing signs of progress in the care of HIV-infected children, particularly in the rural clinics where scale-up increased rapidly over the first three years of program implementation. However, continued efforts to optimize care are needed as many children continue to enroll in ART programs at a late stage of disease and thus are not receiving the full benefits of treatment.</p

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    PARTIAL CHARACTERIZATION OF A NEW BULL SPERM ARYLAMIDASE

    No full text

    Theories of Science, Assessing Understanding of

    No full text

    <b>Quantification of the Immunometabolite Protein Modifications S-2-Succinocysteine and 2,3- Dicarboxypropylcysteine</b> - Supplementary Data

    No full text
    Itaconate and fumarate have roles as immunometabolites modulating the macrophage response to inflammation. Both immunometabolites chemically modify protein cysteine residues to modulate the immune response. Itaconate and fumarate levels change dynamically, whereas their stable protein modifications can be quantified by mass spectrometry. This method distinguishes itaconate and fumarate-derived protein modifications and will allow researchers to quantify their contributions in isolated cell types and tissues across a range of metabolic diseases.</p
    corecore