17,671 research outputs found
Shor's quantum factoring algorithm on a photonic chip
Shor's quantum factoring algorithm finds the prime factors of a large number
exponentially faster than any other known method a task that lies at the heart
of modern information security, particularly on the internet. This algorithm
requires a quantum computer a device which harnesses the `massive parallelism'
afforded by quantum superposition and entanglement of quantum bits (or qubits).
We report the demonstration of a compiled version of Shor's algorithm on an
integrated waveguide silica-on-silicon chip that guides four single-photon
qubits through the computation to factor 15.Comment: 2 pages, 1 figur
The entanglement beam splitter: a quantum-dot spin in a double-sided optical microcavity
We propose an entanglement beam splitter (EBS) using a quantum-dot spin in a
double-sided optical microcavity. In contrast to the conventional optical beam
splitter, the EBS can directly split a photon-spin product state into two
constituent entangled states via transmission and reflection with high fidelity
and high efficiency (up to 100 percent). This device is based on giant optical
circular birefringence induced by a single spin as a result of cavity quantum
electrodynamics and the spin selection rule of trion transition (Pauli
blocking). The EBS is robust and it is immune to the fine structure splitting
in a realistic quantum dot. This quantum device can be used for
deterministically creating photon-spin, photon-photon and spin-spin
entanglement as well as a single-shot quantum non-demolition measurement of a
single spin. Therefore, the EBS can find wide applications in quantum
information science and technology.Comment: 7 pages, 5 figure
Lasers incorporating 2D photonic bandgap mirrors
Semiconductor lasers incorporating a 2D photonic lattice as a one end mirror in a Fabry-Perot cavity are demonstrated. The photonic lattice is a 2D hexagonal close-packed array with a lattice constant of 220 nm. Pulsed threshold currents of 110 mA were observed from a 180 μm laser
Two-dimensional photonic band-gap mirrors at 850 and 980 nm
Summary form only given. Photonic band-gap (PBG) crystals can be fabricated in semiconductor devices through the etching of patterns of holes in the device, resulting in a periodic dielectric structure. One of the more practical uses of photonic crystals in optoelectronic devices is for thin, high-reflectivity mirrors. The use of hexagonal arrays of etched circular holes results in a 2-D photonic band-gap mirror that can be tuned to a specific wavelength by varying the hole radius and the lattice spacing. 2-D mirror characterization is performed by evaluating the light emission from an active waveguide
Twisted Fermi surface of a thin-film Weyl semimetal
The Fermi surface of a conventional two-dimensional electron gas is
equivalent to a circle, up to smooth deformations that preserve the orientation
of the equi-energy contour. Here we show that a Weyl semimetal confined to a
thin film with an in-plane magnetization and broken spatial inversion symmetry
can have a topologically distinct Fermi surface that is twisted into a
\mbox{figure-8} opposite orientations are coupled at a crossing which is
protected up to an exponentially small gap. The twisted spectral response to a
perpendicular magnetic field is distinct from that of a deformed Fermi
circle, because the two lobes of a \mbox{figure-8} cyclotron orbit give
opposite contributions to the Aharonov-Bohm phase. The magnetic edge channels
come in two counterpropagating types, a wide channel of width and a narrow channel of width (with
the magnetic length and the momentum separation
of the Weyl points). Only one of the two is transmitted into a metallic
contact, providing unique magnetotransport signatures.Comment: V4: 10 pages, 14 figures. Added figure and discussion about
"uncrossing deformations" of oriented contours, plus minor corrections.
Published in NJ
Improving clerkship preparedness: a hospital medicine elective for pre-clerkship students.
BackgroundMedical students often struggle to apply their nascent clinical skills in clerkships. While transitional clerkships can orient students to new roles and logistics, students may benefit from developing clinical skills in inpatient environments earlier in their curriculum to improve readiness for clerkships.InterventionOur four- to six-session elective provides pre-clerkship students with individualized learning in the inpatient setting with the aim of improving clerkship preparedness. Students work one-on-one with faculty who facilitate individualized learning through mentoring, deliberate practice, and directed feedback. Second-year medical students are placed on an attending-only, traditionally 'non-teaching' service in the hospital medicine division of a Veterans Affairs (VA) hospital for half-day sessions. Most students self-select into the elective following a class-wide advertisement. The elective also accepts students who are referred for remediation of their clinical skills.OutcomeIn the elective's first two years, 25 students participated and 47 students were waitlisted. We compared participant and waitlisted (non-participant) students' self-efficacy in several clinical and professional domains during their first clerkship. Elective participants reported significantly higher clerkship preparedness compared to non-participants in the areas of physical exam, oral presentation, and formulation of assessments and plans.ConclusionsStudents found the one-on-one feedback and personalized attention from attending physicians to be a particularly useful aspect of the course. This frequently cited benefit points to students' perceived needs and the value they place on individualized feedback. Our innovation harnesses an untapped resource - the hospital medicine 'non-teaching' service - and serves as an attainable option for schools interested in enhancing early clinical skill-building for all students, including those recommended for remediation.AbbreviationsA&P: Assessment and plan; H&P: History and physical; ILP: Individual learning plan
The optical variability of the narrow line Seyfert 1 galaxy IRAS 13224-3809
We report on a short optical monitoring programme of the narrow-line Seyfert
1 Galaxy IRAS 13224-3809. Previous X-ray observations of this object have shown
persistent giant variability. The degree of variability at other wavelengths
may then be used to constrain the conditions and emission processes within the
nucleus. Optical variability is expected if the electron population responsible
for the soft X-ray emission is changing rapidly and Compton-upscattering
infrared photons in the nucleus, or if the mechanism responsible for X-ray
emission causes all the emission processes to vary together. We find that there
is no significant optical variability with a firm upper limit of 2 per cent and
conclude that the primary soft X-ray emission region produces little of the
observed optical emission. The X-ray and optical emission regions must be
physically distinct and any reprocessing of X-rays into the optical waveband
occurs some distance from the nucleus. The lack of optical variability
indicates that the energy density of infrared radiation in the nucleus is at
most equal to that of the ultraviolet radiation since little is upscattered
into the optical waveband. The extremely large X-ray variability of IRAS
13224-3809 may be explained by relativistic boosting of more modest variations.
Although such boosting enhances X-ray variability over optical variability,
this only partially explains the lack of optical variability.Comment: 5 pages with 8 postscript figures. Accepted for publication in MNRA
Adaptive weight estimator for quantum error correction
Quantum error correction of a surface code or repetition code requires the
pairwise matching of error events in a space-time graph of qubit measurements,
such that the total weight of the matching is minimized. The input weights
follow from a physical model of the error processes that affect the qubits.
This approach becomes problematic if the system has sources of error that
change over time. Here we show how the weights can be determined from the
measured data in the absence of an error model. The resulting adaptive decoder
performs well in a time-dependent environment, provided that the characteristic
time scale of the variations is greater than , with the duration of one error-correction cycle and
the typical error probability per qubit in one cycle.Comment: 5 pages, 4 figure
Categorizing identity from facial motion
Advances in marker-less motion capture technology now allow the accurate replication of facial motion and deformation in computer-generated imagery (CGI). A forced-choice discrimination paradigm using such CGI facial animations showed that human observers can categorize identity solely from facial motion cues. Animations were generated from motion captures acquired during natural speech, thus eliciting both rigid (head rotations and translations) and nonrigid (expressional changes) motion. To limit interferences from individual differences in facial form, all animations shared the same appearance. Observers were required to discriminate between different videos of facial motion and between the facial motions of different people. Performance was compared to the control condition of orientation-inverted facial motion. The results show that observers are able to make accurate discriminations of identity in the absence of all cues except facial motion. A clear inversion effect in both tasks provided consistency with previous studies, supporting the configural view of human face perception. The accuracy of this motion capture technology thus allowed stimuli to be generated that closely resembled real moving faces. Future studies may wish to implement such methodology when studying human face perception
- …