4,940 research outputs found

    Application of XFaster power spectrum and likelihood estimator to Planck

    Get PDF
    We develop the XFaster Cosmic Microwave Background (CMB) temperature and polarization anisotropy power spectrum and likelihood technique for the Planck CMB satellite mission. We give an overview of this estimator and its current implementation and present the results of applying this algorithm to simulated Planck data. We show that it can accurately extract the power spectrum of Planck data for the high-l multipoles range. We compare the XFaster approximation for the likelihood to other high-l likelihood approximations such as Gaussian and Offset Lognormal and a low-l pixel-based likelihood. We show that the XFaster likelihood is not only accurate at high-l, but also performs well at moderately low multipoles. We also present results for cosmological parameter Markov Chain Monte Carlo estimation with the XFaster likelihood. As long as the low-l polarization and temperature power are properly accounted for, e.g., by adding an adequate low-l likelihood ingredient, the input parameters are recovered to a high level of accuracy.Comment: 25 pages, 20 figures, updated to reflect published version: slightly extended account of XFaster technique, added improved plots and minor corrections. Accepted for publication in MNRA

    A Bayesian estimate of the skewness of the Cosmic Microwave Background

    Get PDF
    We propose a formalism for estimating the skewness and angular power spectrum of a general Cosmic Microwave Background data set. We use the Edgeworth Expansion to define a non-Gaussian likelihood function that takes into account the anisotropic nature of the noise and the incompleteness of the sky coverage. The formalism is then applied to estimate the skewness of the publicly available 4 year Cosmic Background Explorer (COBE) Differential Microwave Radiometer data. We find that the data is consistent with a Gaussian skewness, and with isotropy. Inclusion of non Gaussian degrees of freedom has essentially no effect on estimates of the power spectrum, if each Câ„“C_\ell is regarded as a separate parameter or if the angular power spectrum is parametrized in terms of an amplitude (Q) and spectral index (n). Fixing the value of the angular power spectrum at its maxiumum likelihood estimate, the best fit skewness is S=6.5\pm6.0\times10^4(\muK)^3; marginalizing over Q the estimate of the skewness is S=6.5\pm8.4\times10^4(\muK)^3 and marginalizing over n one has S=6.5\pm8.5\times10^4(\muK)^3.Comment: submitted to Astrophysical Journal Letter

    Probing non-Gaussianities on Large Scales in WMAP5 and WMAP7 Data using Surrogates

    Full text link
    Probing Gaussianity represents one of the key questions in modern cosmology, because it allows to discriminate between different models of inflation. We test for large-scale non-Gaussianities in the cosmic microwave background (CMB) in a model-independent way. To this end, so-called first and second order surrogates are generated by first shuffling the Fourier phases belonging to the scales not of interest and then shuffling the remaining phases for the length scales under study. Using scaling indices as test statistics we find highly significant signatures for both non-Gaussianities and asymmetries on large scales for the WMAP data of the CMB. We find remarkably similar results when analyzing different ILC-maps based on the WMAP five and seven year data. Such features being independent from the map-making procedure would disfavor the fundamental principle of isotropy as well as canonical single-field slow-roll inflation - unless there is some undiscovered systematic error in the collection or reduction of the CMB data or yet unknown foreground contributions.Comment: 4 pages, 3 figures, to appear in the Proceedings of Moriond Cosmology 201

    The joint large-scale foreground-CMB posteriors of the 3-year WMAP data

    Full text link
    Using a Gibbs sampling algorithm for joint CMB estimation and component separation, we compute the large-scale CMB and foreground posteriors of the 3-yr WMAP temperature data. Our parametric data model includes the cosmological CMB signal and instrumental noise, a single power law foreground component with free amplitude and spectral index for each pixel, a thermal dust template with a single free overall amplitude, and free monopoles and dipoles at each frequency. This simple model yields a surprisingly good fit to the data over the full frequency range from 23 to 94 GHz. We obtain a new estimate of the CMB sky signal and power spectrum, and a new foreground model, including a measurement of the effective spectral index over the high-latitude sky. A particularly significant result is the detection of a common spurious offset in all frequency bands of ~ -13muK, as well as a dipole in the V-band data. Correcting for these is essential when determining the effective spectral index of the foregrounds. We find that our new foreground model is in good agreement with template-based model presented by the WMAP team, but not with their MEM reconstruction. We believe the latter may be at least partially compromised by the residual offsets and dipoles in the data. Fortunately, the CMB power spectrum is not significantly affected by these issues, as our new spectrum is in excellent agreement with that published by the WMAP team. The corresponding cosmological parameters are also virtually unchanged.Comment: 5 pages, 4 figures, submitted to ApJL. Background data are available at http://www.astro.uio.no/~hke under the Research ta

    LISA data analysis I: Doppler demodulation

    Full text link
    The orbital motion of the Laser Interferometer Space Antenna (LISA) produces amplitude, phase and frequency modulation of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleterious affect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signal relative to the instrument noise. We describe a simple method for removing the dominant, Doppler, component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike, and provides a quick way to determine the sky locations and frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde

    Analysis of CMB foregrounds using a database for Planck

    Get PDF
    Within the scope of the Planck IDIS (Integrated Data Information System) project we have started to develop the data model for time-ordered data and full-sky maps. The data model is part of the Data Management Component (DMC), a software system designed according to a three-tier architecture which allows complete separation between data storage and processing. The DMC is already being used for simulation activities and the modeling of some foreground components. We have ingested several Galactic surveys into the database and used the science data-access interface to process the data. The data structure for full-sky maps utilises the HEALPix tessellation of the sphere. We have been able to obtain consistent measures of the angular power spectrum of the Galactic radio continuum emission between 408 MHz and 2417 MHz.Comment: 7 pages, 6 figures. To appear in the Proceedings of the MPA/ESO/MPE Joint Astronomy Conference "Mining The Sky
    • …
    corecore