4,147 research outputs found

    Orbital calculations and trapped radiation mapping

    Get PDF
    Flux and energy spectra code for orbital calculations and trapped radiation mappin

    Information propagation through quantum chains with fluctuating disorder

    Full text link
    We investigate the propagation of information through one-dimensional quantum chains in fluctuating external fields. We find that information propagation is suppressed, but in a quite different way compared to the situation with static disorder. We study two settings: (i) a general model where an unobservable fluctuating field acts as a source of decoherence; (ii) the XX model with both observable and unobservable fluctuating fields. In the first setting we establish a noise threshold below which information can propagate ballistically and above which information is localised. In the second setting we find localisation for all levels of unobservable noise, whilst an observable field can yield diffusive propagation of information.Comment: 5 pages, 2 figure

    A preliminary report on energetic space radiation and dose rate analysis

    Get PDF
    Energetic space radiation and dose rate analysi

    Bounds on Information Propagation in Disordered Quantum Spin Chains

    Full text link
    We investigate the propagation of information through the disordered XY model. We find, with a probability that increases with the size of the system, that all correlations, both classical and quantum, are suppressed outside of an effective lightcone whose radius grows at most polylogarithmically with |t|.Comment: 4 pages, pdflatex, 1 pdf figure. Corrected the bound for the localised propagator and quantified the probability it bound occur

    Charged particle radiation environment for the LST

    Get PDF
    Preliminary charged particle dose rates are presented for the LST orbit. The trapped proton component appears to dominate the total dose for the expected shielding available. Typical dose rates should range from 400 to 800 millirads/day

    Resource Bound Guarantees via Programming Languages

    Get PDF
    We present a programming language in which every well-typed program halts in time polynomial with respect to its input and, more importantly, in which upper bounds on resource requirements can be inferred with certainty. Ensuring that software meets its resource constraints is important in a number of domains, most prominently in hard real-time systems and safety critical systems where failing to meet its time constraints can result in catastrophic failure. The use of test- ing in ensuring resource constraints is of limited use since the testing of every input or environment is impossible in general. Static analysis, whether via the compiler or com- plementary programming tool, can generate proofs of correctness with certainty at the cost that not all programs can be analysed. We describe a programming language, Pola, which provides upper bounds on resource usage for well-typed programs. Further, we describe novel features of Pola that make it more expressive than existing resource-constrained programming languages

    The Party Wall Servitude in Louisiana

    Get PDF
    corecore