164 research outputs found

    Proper Motion of the Irradiated Jet HH 399 in the Trifid Nebula

    Full text link
    HH 399 is one of the first Herbig Haro flows recognized to be irradiated by the UV radiation of the massive O7.5 star in the Trifid nebula. We present the proper motion of the first irradiated jet based on two epochs of HST observations of HH 399 separated nearly by five years using Hα\alpha and [SII] line filters. High proper motion with continuous velocities between 200±\pm55 and 528±24\pm24 \kms are detected in both lines along the 18â€Čâ€Č'' extent of the jet axis. The irradiated fully-ionized jet consists of numerous knots along the jet but also shows the evidence for a number of isolated blob-like structures running immediately outside the jet with lower transverse velocities. The transverse velocities combined with radial velocity measurements indicate that the jet axis lies away from the plane of the sky by only few degrees. We argue that the jet is fully ionized based on [SII]/Hα\alpha line ratio as well as radio continuum emission detected from the full extent of the jet at 3.6cm wavelength. The stellar mass-loss rate producing HH 399 is estimated to be \approx 2\times10^{-6} \msol yr−1^{-1}.Comment: 14 pages, 6 figures, ApJ (in press

    X-ray variability in M87

    Get PDF
    We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGN nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.Comment: 9 pages latex plus 6 ps figs. To appear in Monthly Notices of the RA

    Collimation of extragalactic radio jets in compact steep spectrum and larger sources

    Get PDF
    We study the collimation of radio jets in the high-luminosity Fanaroff-Riley class II sources by examining the dependence of the sizes of hotspots and knots in the radio jets on the overall size of the objects for a sample of compact steep-spectrum or CSS and larger-sized objects. The objects span a wide range in overall size from about 50 pc to nearly 1 Mpc. The mean size of the hotspots increases with the source size during the CSS phase, which is typically taken to be about 20 kpc, and the relationship flattens for the larger sources. The sizes of the knots in the compact as well as the larger sources are consistent with this trend. We discuss possible implications of these trends. We find that the hotspot closer to the nucleus or core component tends to be more compact for the most asymmetric objects where the ratio of separations of the hotspots from the nucleus, r_d > 2. These highly asymmetric sources are invariably CSS objects, and their location in the hotspot size ratio - separation ratio diagram is possibly due to their evolution in an asymmetric environment. We also suggest that some soures, especially of lower luminosity, exhibit an asymmetry in the collimation of the oppositely-directed radio jets.Comment: MNRAS in press, 9 pages and 3 figures, MNRAS LaTe

    Morphology of the Nuclear Disk in M87

    Get PDF
    A deep, fuly sampled diffraction limited (FWHM ~ 70 mas) narrow-band image of the central region in M87 was obtained with the Wide Filed and Planetary Camera 2 of the Hubble Space Telescope using the dithering technique. The H-alpha+[NII] continuum subtracted image reveals a wealth of details in the gaseous disk structure described earlier by Ford et al. (1994). The disk morphology is dominated by a well defined three-arm spiral pattern. In addition, the major spiral arms contain a large number of small "arclets" covering a range of sizes (0.1-0.3 arcsec = 10-30 pc). The overall surface brightness profile inside a radius ~1.5" (100 pc) is well represented by a power-law I(mu) ~ mu^(-1.75), but when the central ~40 pc are excluded it can be equally well fit by an exponential disk. The major axis position angle remains constant at about PA_disk ~ 6 deg for the innermost ~1", implying the disk is oriented nearly perpendicular to the synchrotron jet (PA_jet ~ 291 deg). At larger radial distances the isophotes twist, reflecting the gas distribution in the filaments connecting to the disk outskirts. The ellipticity within the same radial range is e = 0.2-0.4, which implies an inclination angle of i~35 deg. The sense of rotation combined with the dust obscuration pattern indicate that the spiral arms are trailing.Comment: 5 pages, 3 postscript figures, to appear in the Proceedings of the M87 Workshop, Ringberg castle, Germany, 15-19 Sep 1997, also available from http://jhufos.pha.jhu.edu/~zlatan/papers.htm

    Proper Motions of Ionized Gas at the Galactic Center: Evidence for Unbound Orbiting Gas

    Get PDF
    We present radio continuum observations of the spiral-shaped ionized feature (Sgr A West) within the inner pc of the Galactic center at three epochs spanning 1986 to 1995. The VLA A-configuration was used at λ\lambda2cm (resolution of 0\dasec1×\times0\dasec2). We detect proper motions of a number of features in the Northern and Eastern Arms of Sgr A West including the ionized gas associated with IRS 13 with V(RA)= 113 \pm 10, V(Dec)=150 \pm15 km/s, IRS 2 with V(RA)= 122 \pm 11, V(Dec)=24 \pm 34 km/s and the Norther Arm V(RA)= 126 \pm 30, V(Dec)=--207 \pm 58 km/s. We also report the detection of features having transverse velocities > 1000 km/s including a head-tail radio structure, the ``Bullet'', ≈4â€Čâ€Č\approx4'' northwest of Sgr A∗^* with V(RA)= 722 \pm 156, V(Dec)=832 \pm 203 km/s, exceeding the escape velocity at the Galactic center. The proper motion measurements when combined with previous H92α\alpha radio recombination line data suggest an unambiguous direction of the flow of ionized gas orbiting the Galactic center. The measured velocity distribution suggests that the ionized gas in the Northern Arm is not bound to the Galactic center assuming a 2.5 million solar mass of dark matter residing at the Galactic center. This implies that the stellar and ionized gas systems are not dynamically coupled, thus, supporting a picture in which the gas features in the Northern Arm and its extensions are the result of an energetic phenomenon that has externally driven a cloud of gas cloud into the Galactic center.Comment: 11 pages, three figures (one color) and one table. Astrophysical Journal Letters in pres

    Magnetic collimation of the relativistic jet in M87

    Full text link
    We apply a two-zone MHD model to the jet of M87. The model consists of an inner relativistic outflow, which is surrounded by a non-relativistic outer disk-wind. The outer disk-wind collimates very well through magnetic self-collimation and confines the inner relativistic jet into a narrow region around the rotation axis. Further, we show by example, that such models reproduce very accurately the observed opening angle of the M87 jet over a large range from the kiloparsec scale down to the sub-parsec scale.Comment: 4 pages, 2 figures, accepted by A&A Letter

    What Fraction of the Young Clusters in the Antennae Galaxies are "Missing"?

    Get PDF
    A reexamination of the correspondence between 6 cm radio continuum sources and young star clusters in the Antennae galaxies indicates that 85 % of the strong thermal sources have optical counterparts, once the optical image is shifted 1.2 arcsec to the southwest. A sample of 37 radio-optical matches are studied in detail showing correlations between radio properties and a variety of optical characteristics. There is a strong correlation between the radio flux and the intrinsic optical brightness. In particular, the brightest radio source is also the intrinsically brightest optical cluster (WS80). It is also the most extincted cluster in the sample, the strongest CO source and the strongest 15 micron source . Furthermore, the brightest ten radio sources are all amongst the youngest clusters with ages in the range 0 - 4 Myr and extinctions from A_V = 0.5 to 7.6 mag (with a median value of 2.6 mag). Only a few of the very red clusters originally discovered by Whitmore & Schweizer are radio sources, contrary to earlier suggestions. Finally, a new hybrid method of determining cluster ages has been developed using both UBVI colors and H_alpha equivalent widths to break the age-reddening degeneracy.Comment: 51 pages, 13 postscript figures, LaTex. To appear in the Astronomical Journal, 124, 2002, Septembe
    • 

    corecore