2,620 research outputs found
Fluid flow restrictor Patent
Tubular flow restrictor for gas flow control in pipelin
Gas-flow restrictor
Gas flow restrictor is described, consisting of predetermined length and size of capillary tubing to control flow rate of carrier gas into gas chromatograph of flow rate of sample gas into mass spectrometer inlet system. Length and inner diameter of capillary tubing was estimated with mathematical expressions for viscous flow
Random vibration (stress screening) of printed wiring assemblies
The results of a random vibration test screening (RVSS) study of the determination of the upper and lower vibration limits on printed wiring assemblies (PWA) are summarized. The study results are intended to serve as a guide for engineers and designers who make decisions on PWA features that need to withstand the stresses of dynamic testing and screening. The maximum allowable PWA deflection, G levels, and PSD levels are compared to the expected or actual levels to determine if deleterious effects will occur
Unsupported thin film beam splitter
Multilayer beam splitter system yielding nearly equal broadband infrared reflectance and transmittance in the 5 to 50 micron spectral region has been developed which will significantly reduce size and cost of light path compensating devices in infrared spectral instruments
A note on Stokes' problem in dense granular media using the --rheology
The classical Stokes' problem describing the fluid motion due to a steadily
moving infinite wall is revisited in the context of dense granular flows of
mono-dispersed beads using the recently proposed --rheology. In
Newtonian fluids, molecular diffusion brings about a self-similar velocity
profile and the boundary layer in which the fluid motion takes place increases
indefinitely with time as , where is the kinematic
viscosity. For a dense granular visco-plastic liquid, it is shown that the
local shear stress, when properly rescaled, exhibits self-similar behaviour at
short-time scales and it then rapidly evolves towards a steady-state solution.
The resulting shear layer increases in thickness as analogous
to a Newtonian fluid where is an equivalent granular kinematic
viscosity depending not only on the intrinsic properties of the granular media
such as grain diameter , density and friction coefficients but also
on the applied pressure at the moving wall and the solid fraction
(constant). In addition, the --rheology indicates that this growth
continues until reaching the steady-state boundary layer thickness , independent of the grain size, at about a finite
time proportional to , where is
the acceleration due to gravity and is the
relative surplus of the steady-state wall shear-stress over the
critical wall shear stress (yield stress) that is needed to bring the
granular media into motion... (see article for a complete abstract).Comment: in press (Journal of Fluid Mechanics
Encapsulated formulation of the Selective Frequency Damping method
We present an alternative "encapsulated" formulation of the Selective
Frequency Damping method for finding unstable equilibria of dynamical systems,
which is particularly useful when analysing the stability of fluid flows. The
formulation makes use of splitting methods, which means that it can be wrapped
around an existing time-stepping code as a "black box". The method is first
applied to a scalar problem in order to analyse its stability and highlight the
roles of the control coefficient and the filter width in the
convergence (or not) towards the steady-state. Then the steady-state of the
incompressible flow past a two-dimensional cylinder at , obtained with
a code which implements the spectral/hp element method, is presented
Polarimetric variations of binary stars. II. Numerical simulations for circular and eccentric binaries in Mie scattering envelopes
We present numerical simulations of the periodic polarimetric variations
produced by a binary star placed at the center of an empty spherical cavity
inside a circumbinary ellipsoidal and optically thin envelope made of dust
grains. Mie single-scattering is considered along with pre- and post-scattering
extinction factors which produce a time-varying optical depth and affect the
morphology of the periodic variations. We are interested in the effects that
various parameters will have on the average polarization, the amplitude of the
polarimetric variations, and the morphology of the variability. We show that
the absolute amplitudes of the variations are smaller for Mie scattering than
for Thomson scattering. Among the four grain types that we have studied, the
highest polarizations are produced by grains with sizes in the range 0.1-0.2
micron. In general, the variations are seen twice per orbit. In some cases,
because spherical dust grains have an asymmetric scattering function, the
polarimetric curves produced also show variations seen once per orbit.
Circumstellar disks produce polarimetric variations of greater amplitude than
circumbinary envelopes.
Another goal of these simulations is to see if the 1978 BME (Brown, McLean, &
Emslie, ApJ, 68, 415) formalism, which uses a Fourier analysis of the
polarimetric variations to find the orbital inclination for Thomson-scattering
envelopes, can still be used for Mie scattering. We find that this is the case,
if the amplitude of the variations is sufficient and the true inclinations is
i_true > 45 deg. For eccentric orbits, the first-order coefficients of the
Fourier fit, instead of second-order ones, can be used to find almost all
inclinations.Comment: 23 pages, 5 figures, to be published in Astronomical Journa
- …