27 research outputs found

    Inverse cascades in turbulence and the case of rotating flows

    Get PDF
    We first summarize briefly several properties concerning the dynamics of two-dimensional (2D) turbulence, with an emphasis on the inverse cascade of energy to the largest accessible scale of the system. In order to study a similar phenomenon in three-dimensional (3D) turbulence undergoing strong solid-body rotation, we test a previously developed Large Eddy Simulation (LES) model against a high-resolution direct numerical simulation of rotating turbulence on a grid of 307233072^3 points. We then describe new numerical results on the inverse energy cascade in rotating flows using this LES model and contrast the case of 2D versus 3D forcing, as well as non-helical forcing (i.e., with weak overall alignment between velocity and vorticity) versus the fully helical Beltrami case, both for deterministic and random forcing. The different scaling of the inverse energy cascade can be attributed to the dimensionality of the forcing, with, in general, either a k⊄−3k_{\perp}^{-3} or a k⊄−5/3k_{\perp}^{-5/3} energy spectrum of slow modes at large scales, perpendicular referring to the direction of rotation. We finally invoke the role of shear in the case of a strongly anisotropic deterministic forcing, using the so-called ABC flow.Comment: 10 pages, 3 figure

    Spectral Modeling of Magnetohydrodynamic Turbulent Flows

    Full text link
    We present a dynamical spectral model for Large Eddy Simulation of the incompressible magnetohydrodynamic (MHD) equations based on the Eddy Damped Quasi Normal Markovian approximation. This model extends classical spectral Large Eddy Simulations for the Navier-Stokes equations to incorporate general (non Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD and show that introducing a new eddy-damping time for the dynamics of spectral tensors in the absence of equipartition between the velocity and magnetic fields leads to better agreement with direct numerical simulations, an important point for dynamo computations.Comment: 10 pages, 13 figure

    Astrophysical turbulence modeling

    Full text link
    The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and maintained by dynamo action. The extreme temperature and density contrasts and stratifications are emphasized in connection with turbulence in the interstellar medium and in stars with outer convection zones, respectively. In many cases turbulence plays an essential role in facilitating enhanced transport of mass, momentum, energy, and magnetic fields in terms of the corresponding coarse-grained mean fields. Those transport properties are usually strongly modified by anisotropies and often completely new effects emerge in such a description that have no correspondence in terms of the original (non coarse-grained) fields.Comment: 88 pages, 26 figures, published in Reports on Progress in Physic

    An accelerating high-latitude jet in Earth's core

    Get PDF
    Observations of the change in Earth's magnetic field, the secular variation, provide information on the motion of liquid metal within the core that is responsible for its generation. The very latest high-resolution observations from ESA's Swarm satellite mission show intense field change at high-latitude localised in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we explain this feature with a localised, non-axisymmetric, westwards jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000--2016 to about 40 km/yr, and is now much stronger than typical large-scale flows inferred for the core. The current accelerating phase may be a part of a longer term fluctuation of the jet causing both eastwards and westwards movement of magnetic features over historical periods, and may contribute to recent changes in torsional wave activity and the rotation direction of the inner core

    Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

    Get PDF
    We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions

    Evaluation of candidate models for the 13th generation International Geomagnetic Reference Field

    Get PDF
    In December 2019, the 13th revision of the International Geomagnetic Reference Field (IGRF) was released by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. This revision comprises two new spherical harmonic main field models for epochs 2015.0 (DGRF-2015) and 2020.0 (IGRF-2020) and a model of the predicted secular variation for the interval 2020.0 to 2025.0 (SV-2020-2025). The models were produced from candidates submitted by fifteen international teams. These teams were led by the British Geological Survey (UK), China Earthquake Administration (China), Universidad Complutense de Madrid (Spain), University of Colorado Boulder (USA), Technical University of Denmark (Denmark), GFZ German Research Centre for Geosciences (Germany), Institut de physique du globe de Paris (France), Institut des Sciences de la Terre (France), Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (Russia), Kyoto University (Japan), University of Leeds (UK), Max Planck Institute for Solar System Research (Germany), NASA Goddard Space Flight Center (USA), University of Potsdam (Germany), and UniversitĂ© de Strasbourg (France). The candidate models were evaluated individually and compared to all other candidates as well to the mean, median and a robust Huber-weighted model of all candidates. These analyses were used to identify, for example, the variation between the Gauss coefficients or the geographical regions where the candidate models strongly differed. The majority of candidates were sufficiently close that the differences can be explained primarily by individual modeling methodologies and data selection strategies. None of the candidates were so different as to warrant their exclusion from the final IGRF-13. The IAGA V-MOD task force thus voted for two approaches: the median of the Gauss coefficients of the candidates for the DGRF-2015 and IGRF-2020 models and the robust Huber-weighted model for the predictive SV-2020-2025. In this paper, we document the evaluation of the candidate models and provide details of the approach used to derive the final IGRF-13 products. We also perform a retrospective analysis of the IGRF-12 SV candidates over their performance period (2015–2020). Our findings suggest that forecasting secular variation can benefit from combining physics-based core modeling with satellite observations

    International Geomagnetic Reference Field: the thirteenth generation

    Get PDF
    In December 2019, the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group (V-MOD) adopted the thirteenth generation of the International Geomagnetic Reference Field (IGRF). This IGRF updates the previous generation with a definitive main field model for epoch 2015.0, a main field model for epoch 2020.0, and a predictive linear secular variation for 2020.0 to 2025.0. This letter provides the equations defining the IGRF, the spherical harmonic coefficients for this thirteenth generation model, maps of magnetic declination, inclination and total field intensity for the epoch 2020.0, and maps of their predicted rate of change for the 2020.0 to 2025.0 time period
    corecore