14,219 research outputs found
Quantum-classical transition in the Caldeira-Leggett model
The quantum-classical transition in the Caldeira-Leggett model is
investigated in the framework of the functional renormalization group method.
It is shown that a divergent quadratic term arises in the action due to the
heat bath in the model. By removing the divergence with a frequency cutoff we
considered the critical behavior of the model. The critical exponents belonging
to the susceptibility and the correlation length are determined and their
independence of the frequency cutoff and the renormalization scheme is shown.Comment: 8 pages, 4 figure
Hydrocarbons in the banana leaf, Musa sapientum
Mass spectrometry, spectroscopy, and thin layer and gas chromatography studies of hydrocarbons in banana leave
Interplay of fixed points in scalar models
We performed the renormalization group analysis of scalar models exhibiting
spontaneous symmetry breaking. It is shown that an infrared fixed point appears
in the broken symmetric phase of the models, which induces a dynamical scale,
that can be identified with the correlation length. This enables one to
identify the type of the phase transition which shows similarity to the one
appearing in the crossover scale. The critical exponent of the
correlation length also proved to be equal in the crossover and the infrared
scaling regimes.Comment: 11 pages, 4 figure
Extended Weak Coupling Limit for Friedrichs Hamiltonians
We study a class of self-adjoint operators defined on the direct sum of two
Hilbert spaces: a finite dimensional one called sometimes a ``small subsystem''
and an infinite dimensional one -- a ``reservoir''. The operator, which we call
a ``Friedrichs Hamiltonian'', has a small coupling constant in front of its
off-diagonal term. It is well known that under some conditions in the weak
coupling limit the appropriately rescaled evolution in the interaction picture
converges to a contractive semigroup when restricted to the subsystem. We show
that in this model, the properly renormalized and rescaled evolution converges
on the whole space to a new unitary evolution, which is a dilation of the above
mentioned semigroup. Similar results have been studied before \cite{AFL} in
more complicated models and they are usually referred to as "stochastic Limit".Comment: changes in notation and title, minor correction
Extreme Supernova Models for the Superluminous Transient ASASSN-15lh
The recent discovery of the unprecedentedly superluminous transient
ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the
power-input models that have been proposed for superluminous supernovae. Here
we examine some of the few viable interpretations of ASASSN-15lh in the context
of a stellar explosion, involving combinations of one or more power inputs. We
model the lightcurve of ASASSN-15lh with a hybrid model that includes
contributions from magnetar spin-down energy and hydrogen-poor circumstellar
interaction. We also investigate models of pure circumstellar interaction with
a massive hydrogen-deficient shell and discuss the lack of interaction features
in the observed spectra. We find that, as a supernova ASASSN-15lh can be best
modeled by the energetic core-collapse of a ~40 Msun star interacting with a
hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass
are consistent with a rapidly rotating pulsational pair-instability supernova
progenitor as required for strong interaction following the final supernova
explosion. Additional energy injection by a magnetar with initial period of 1-2
ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity
required to overcome the deficit in single-component models, but this requires
more fine-tuning and extreme parameters for the magnetar, as well as the
assumption of efficient conversion of magnetar energy into radiation. We thus
favor a single-input model where the reverse shock formed in a strong SN
ejecta-CSM interaction following a very powerful core-collapse SN explosion can
supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure
Multi-jet cross sections in deep inelastic scattering at next-to-leading order
We present the perturbative prediction for three-jet production cross section
in DIS at the NLO accuracy. We study the dependence on the renormalization and
factorization scales of exclusive three-jet cross section. The perturbative
prediction for the three-jet differential distribution as a function of the
momentum transfer is compared to the corresponding data obtained by the H1
collaboration at HERA.Comment: 5 pages, 3 figure
- …