538 research outputs found

    Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results

    Full text link
    We review some recent attempts to extract information about the nature of quantum gravity, with and without matter, by quantum field theoretical methods. More specifically, we work within a covariant lattice approach where the individual space-time geometries are constructed from fundamental simplicial building blocks, and the path integral over geometries is approximated by summing over a class of piece-wise linear geometries. This method of ``dynamical triangulations'' is very powerful in 2d, where the regularized theory can be solved explicitly, and gives us more insights into the quantum nature of 2d space-time than continuum methods are presently able to provide. It also allows us to establish an explicit relation between the Lorentzian- and Euclidean-signature quantum theories. Analogous regularized gravitational models can be set up in higher dimensions. Some analytic tools exist to study their state sums, but, unlike in 2d, no complete analytic solutions have yet been constructed. However, a great advantage of our approach is the fact that it is well-suited for numerical simulations. In the second part of this review we describe the relevant Monte Carlo techniques, as well as some of the physical results that have been obtained from the simulations of Euclidean gravity. We also explain why the Lorentzian version of dynamical triangulations is a promising candidate for a non-perturbative theory of quantum gravity.Comment: 69 pages, 16 figures, references adde

    Scaling with a modified Wilson action which suppresses Z_2 artifacts in SU(2) lattice gauge theories

    Get PDF
    A modified Wilson action which suppresses plaquettes which take negative values is used to study the scaling behavior of the string tension. The use of the \b_E scheme gives good agreement with asymptotic two loop results.Comment: Latex (ps figure appended in the end), 7 page

    Two-Dimensional Quantum Geometry

    Full text link
    In these lectures we review our present understanding of the fractal structure of two-dimensional Euclidean quantum gravity coupled to matter.Comment: Lectures presented at "The 53rd Cracow School of Theoretical Physics: Conformal Symmetry and Perspectives in Quantum and Mathematical Gravity", June 28 - July 7, 2013, Zakopane, Polan

    Scattering amplitudes of regularized bosonic strings

    Get PDF
    We compute scattering amplitudes of the regularized bosonic Nambu-Goto string in the mean-field approximation, disregarding fluctuations of the Lagrange multiplier and an independent metric about their mean values. We use the previously introduced Lilliputian scaling limit to recover the Regge behavior of the amplitudes with the usual linear Regge trajectory in space-time dimensions d>2. We demonstrate a stability of this minimum of the effective action under fluctuations for d<26.Comment: 11 pages, v2: typos corrected, to appear in PR

    Creating 3, 4, 6 and 10-dimensional spacetime from W3 symmetry

    Get PDF
    We describe a model where breaking of W3 symmetry will lead to the emergence of time and subsequently of space. Surprisingly the simplest such models which lead to higher dimensional spacetimes are based on the four "magical" Jordan algebras of 3x3 Hermitian matrices with real, complex, quaternion and octonion entries, respectively. The simplest symmetry breaking leads to universes with spacetime dimensions 3, 4, 6, and 10

    CDT and the Big Bang

    Get PDF
    We describe a CDT-like model where breaking of W3 symmetry will lead to the emergence of time and subsequently of space. Surprisingly the simplest such models which lead to higher dimensional spacetimes are based on the four "magical" Jordan algebras of 3x3 Hermitian matrices with real, complex, quaternion and octonion entries, respectively. The simplest symmetry breaking leads to universes with spacetime dimensions 3, 4, 6, and 10

    A modified Friedmann equation

    Full text link
    We recently formulated a model of the universe based on an underlying W3-symmetry. It allows the creation of the universe from nothing and the creation of baby universes and wormholes for spacetimes of dimension 2, 3, 4, 6 and 10. Here we show that the classical large time and large space limit of these universes is one of exponential fast expansion without the need of a cosmological constant. Under a number of simplifying assumptions our model predicts that w=-1.2 in the case of four-dimensional spacetime. The possibility of obtaining a w-value less than -1 is linked to the ability of our model to create baby universes and wormholes.Comment: Clarifying comment on page

    The use of Pauli-Villars' regularization in string theory

    Get PDF
    The proper-time regularization of bosonic string reproduces the results of canonical quantization in a special scaling limit where the length in target space has to be renormalized. We repeat the analysis for the Pauli-Villars regularization and demonstrate the universality of the results. In the mean-field approximation we compute the susceptibility anomalous dimension and show it equals 1/2. We discuss the relation with the previously known results on lattice strings.Comment: 1+22 p

    Causal Dynamical Triangulations and the Quest for Quantum Gravity

    Full text link
    Quantum Gravity by Causal Dynamical Triangulation has over the last few years emerged as a serious contender for a nonperturbative description of the theory. It is a nonperturbative implementation of the sum-over-histories, which relies on few ingredients and initial assumptions, has few free parameters and - crucially - is amenable to numerical simulations. It is the only approach to have demonstrated that a classical universe can be generated dynamically from Planckian quantum fluctuations. At the same time, it allows for the explicit evaluation of expectation values of invariants characterizing the highly nonclassical, short-distance behaviour of spacetime. As an added bonus, we have learned important lessons on which aspects of spacetime need to be fixed a priori as part of the background structure and which can be expected to emerge dynamically.Comment: To appear in "Foundations of Space and Time", Cambridge Univ. Press, eds. G. Ellis, J. Murugan, A Weltma
    corecore