479 research outputs found

    Evaluation of a measles vaccine campaign by oral-fluid surveys in a rural Kenyan district: interpretation of antibody prevalence data using mixture models

    Get PDF
    We evaluated the effectiveness of a measles vaccine campaign in rural Kenya, based on oral-fluid surveys and mixture-modelling analysis. Specimens were collected from 886 children aged 9 months to 14 years pre-campaign and from a comparison sample of 598 children aged 6 months post-campaign. Quantitative measles-specific antibody data were obtained by commercial kit. The estimated proportions of measles-specific antibody negative in children aged 0–4, 5–9 and 10–14 years were 51%, 42% and 27%, respectively, pre- campaign and 18%, 14% and 6%, respectively, post-campaign. We estimate a reduction in the proportion susceptible of 65–78%, with ~85% of the population recorded to have received vaccine. The proportion of ‘weak’ positive individuals rose from 35% pre-campaign to 54% post-campaign. Our results confirm the effectiveness of the campaign in reducing susceptibility to measles and demonstrate the potential of oral-fluid studies to monitor the impact of measles vaccination campaigns

    Photoreflectance analysis of a GaInP/GaInAs/Ge multijunction solar cell

    Get PDF
    We have analyzed the photoreflectance spectra of a GaInP/GaInAs/Ge triple junction solar cell. The spectra reveal signatures from the window layer and middle and top subcells included in the stack. Additional contributions from the multilayer buffer introduced between the mismatched bottom and middle cells have been detected. Franz–Keldysh oscillations (FKOs) dominate the spectra above the fundamental bandgaps of the GaInP and GaInAs absorbers. From the FKO analysis, we have estimated the dominant electric fields within each subcell. In light of these results, photoreflectance is proposed as a useful diagnostic tool for quality assessment of multijunction structures prior to completion of the device or at earlier stages during its processing

    The Redshift Evolution of LCDM Halo Parameters: Concentration, Spin, and Shape

    Full text link
    We present a detailed study of the redshift evolution of dark matter halo structural parameters in a LambdaCDM cosmology. We study the mass and redshift dependence of the concentration, shape and spin parameter in Nbody simulations spanning masses from 10^{10} Msun/h to 10^{15} Msun/h and redshifts from 0 to 2. We present a series of fitting formulas that accurately describe the time evolution of the concentration-mass relation since z=2. Using arguments based on the spherical collapse model we study the behaviour of the scale length of the density profile during the assembly history of haloes, obtaining physical insights on the origin of the observed time evolution of the concentration mass relation. We also investigate the evolution with redshift of dark matter halo shape and its dependence on mass. Within the studied redshift range the relation between halo shape and mass can be well fitted by a power law. Finally we show that although for z=0 the spin parameter is practically mass independent, at increasing redshift it shows a increasing correlation with mass.Comment: 12 pages, 11 figures, accepted to MNRAS, minor changes to previous versio

    Massa de forragem e características morfológicas de gramíneas do gênero Brachiaria na região do Arenito Caiuá/PR

    Get PDF
    Na região Noroeste do Paraná, assim como em boa parte do Brasil, as espécies forrageiras mais utilizadas são as gramíneas do gênero Brachiaria, com destaque para a Brachiaria brizantha cv. Marandu. Contudo, existem novas cultivares que precisam ser avaliadas. O objetivo deste estudo foi avaliar a massa de forragem, características morfológicas e alturas de manejo (95% interceptação luminosa do dossel) de cinco cultivares de Brachiaria brizantha (Marandu, Xaraés, Piatã, Paiaguás e MG-4) e a Brachiaria híbrida Convert HD 364. Utilizou-se delineamento inteiramente casualizado, com seis tratamentos e quatro repetições. Foram avaliados a altura e interceptação luminosa do dossel, massa de forragem e composição morfológica das plantas. As cultivares Xaraés, Paiaguás e MG-4 destacaram-se pela maior massa de forragem total e de folhas, particularmente na época seca, e são boas alternativas para a cultivar Marandu. . A altura do dossel forrageiro de entrada preconizada para as cultivares Marandu e Piatã está em torno de 25 cm, para Xaraés e MG- 30 cm, Paiaguás 34 cm, e Convert 23 cm

    Performance analysis of AlGaAs/GaAs tunnel junctions for ultra-high concentration photovoltaics

    Get PDF
    An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations

    Thermophotovoltaic Cells on Zinc Diffused Polycrystalline GaSb

    Get PDF
    For the first time, it has been demonstrated that thermophotovoltaic cells made of polycrystalline GaSb with small grain sizes (down to 100 x 100 {micro}m) have similar characteristics to the best Zinc diffused single crystal GaSb cells with identified device parameters. The grain boundaries in polycrystalline GaSb do not degrade TPV cell parameters, indicating that such material can be used for high-efficiency thermophotovoltaic cells

    Creating a proof-of-concept climate service to assess future renewable energy mixes in Europe: an overview of the C3S ECEM project

    Get PDF
    The EU Copernicus Climate Change Service (C3S) European Climatic Energy Mixes (ECEM) has produced, in close collaboration with prospective users, a proof-of-concept climate service, or Demonstrator, designed to enable the energy industry and policy makers assess how well different energy supply mixes in Europe will meet demand, over different time horizons (from seasonal to long-term decadal planning), focusing on the role climate has on the mixes. The concept of C3S ECEM, its methodology and some results are presented here. The first part focuses on the construction of reference data sets for climate variables based on the ERA-Interim reanalysis. Subsequently, energy variables were created by transforming the bias-adjusted climate variables using a combination of statistical and physically-based models. A comprehensive set of measured energy supply and demand data was also collected, in order to assess the robustness of the conversion to energy variables. Climate and energy data have been produced both for the historical period (1979–2016) and for future projections (from 1981 to 2100, to also include a past reference period, but focusing on the 30 year period 2035–2065). The skill of current seasonal forecast systems for climate and energy variables has also been assessed. The C3S ECEM project was designed to provide ample opportunities for stakeholders to convey their needs and expectations, and assist in the development of a suitable Demonstrator. This is the tool that collects the output produced by C3S ECEM and presents it in a user-friendly and interactive format, and it therefore constitutes the essence of the C3S ECEM proof-of-concept climate service

    The Ubiquitin-Proteasome Reporter GFPu Does Not Accumulate in Neurons of the R6/2 Transgenic Mouse Model of Huntington's Disease

    Get PDF
    Impairment of the ubiquitin-proteasome system (UPS) has long been considered an attractive hypothesis to explain the selective dysfunction and death of neurons in polyglutamine disorders such as Huntington's disease (HD). The fact that inclusion bodies in HD mouse models and patient brains are rich in ubiquitin and proteasome components suggests that the UPS may be hindered directly or indirectly by inclusion bodies or their misfolded monomeric or oligomeric precursors. However, studies into UPS function in various polyglutamine disease models have yielded conflicting results, suggesting mutant polyglutamine tracts may exert different effects on the UPS depending on protein context, expression level, subcellular localisation and cell-type. To investigate UPS function in a well-characterised mouse model of HD, we have crossed R6/2 HD mice with transgenic UPS reporter mice expressing the GFPu construct. The GFPu construct comprises GFP fused to a constitutive degradation signal (CL-1) that promotes its rapid degradation under conditions of a healthy UPS. Using a combination of immunoblot analysis, fluorescence and immunofluorescence microscopy studies, we found that steady-state GFPu levels were not detectably different between R6/2 and non-R6/2 brain. We observed no correlation between inclusion body formation and GFPu accumulation, suggesting no direct relationship between protein aggregation and global UPS inhibition in R6/2 mice. These findings suggest that while certain branches of the UPS can be impaired by mutant polyglutamine proteins, such proteins do not necessarily cause total blockade of UPS-dependent degradation. It is therefore likely that the relationship between mutant polyglutamine proteins and the UPS is more complex than originally anticipated

    The inherited blindness protein AIPL1 regulates the ubiquitin-like FAT10 pathway

    Get PDF
    Mutations in AIPL1 cause the inherited blindness Leber congenital amaurosis (LCA). AIPL1 has previously been shown to interact with NUB1, which facilitates the proteasomal degradation of proteins modified with the ubiquitin-like protein FAT10. Here we report that AIPL1 binds non-covalently to free FAT10 and FAT10ylated proteins and can form a ternary complex with FAT10 and NUB1. In addition, AIPL1 antagonised the NUB1-mediated degradation of the model FAT10 conjugate, FAT10-DHFR, and pathogenic mutations of AIPL1 were defective in inhibiting this degradation. While all AIPL1 mutants tested still bound FAT10-DHFR, there was a close correlation between the ability of the mutants to interact with NUB1 and their ability to prevent NUB1-mediated degradation. Interestingly, AIPL1 also co-immunoprecipitated the E1 activating enzyme for FAT10, UBA6, suggesting AIPL1 may have a role in directly regulating the FAT10 conjugation machinery. These studies are the first to implicate FAT10 in retinal cell biology and LCA pathogenesis, and reveal a new role of AIPL1 in regulating the FAT10 pathway
    corecore