6,335 research outputs found

    Radiation Damage and Recovery Properties of Common Plastics PEN (Polyethylene Naphthalate) and PET (Polyethylene Terephthalate) Using a 137Cs Gamma Ray Source Up To 1 MRad and 10 MRad

    Full text link
    Polyethylene naphthalate (PEN) and polyethylene teraphthalate (PET) are cheap and common polyester plastics used throughout the world in the manufacturing of bottled drinks, containers for foodstuffs, and fibers used in clothing. These plastics are also known organic scintillators with very good scintillation properties. As particle physics experiments increase in energy and particle flux density, so does radiation exposure to detector materials. It is therefore important that scintillators be tested for radiation tolerance at these generally unheard of doses. We tested samples of PEN and PET using laser stimulated emission on separate tiles exposed to 1 MRad and 10 MRad gamma rays with a 137Cs source. PEN exposed to 1 MRad and 10 MRad emit 71.4% and 46.7% of the light of an undamaged tile, respectively, and maximally recover to 85.9% and 79.5% after 5 and 9 days, respectively. PET exposed to 1 MRad and 10 MRad emit 35.0% and 12.2% light, respectively, and maximally recover to 93.5% and 80.0% after 22 and 60 days, respectively

    Tests of a Novel Design of Resistive Plate Chambers

    Full text link
    A novel design of Resistive Plate Chambers (RPCs), using only a single resistive plate, is being proposed. Based on this design, two large size prototype chambers were constructed and were tested with cosmic rays and in particle beams. The tests confirmed the viability of this new approach. In addition to showing an improved single-particle response compared to the traditional 2-plate design, the novel chambers also prove to be suitable for calorimetric applications

    Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry

    Full text link
    Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes have been characterized for use in a Secondary Emission (SE) Ionization Calorimetry study. SE Ionization Calorimetry is a novel technique to measure electromagnetic shower particles in extreme radiation environments. The different operation modes used in these tests were developed by modifying the conventional PMT bias circuit. These modifications were simple changes to the arrangement of the voltage dividers of the baseboard circuits. The PMTs with modified bases, referred to as operating in SE mode, are used as an SE detector module in an SE calorimeter prototype, and placed between absorber materials (Fe, Cu, Pb, W, etc.). Here, the technical design of different operation modes, as well as the characterization measurements of both SE modes and the conventional PMT mode are reported

    Measurements of the Rate Capability of Various Resistive Plate Chambers

    Full text link
    Resistive Plate Chambers (RPCs) exhibit a significant loss of efficiency for the detection of particles, when subjected to high particle fluxes. This rate limitation is related to the usually high resistivity of the resistive plates used in their construction. This paper reports on measurements of the performance of three different glass RPC designs featuring a different total resistance of the resistive plates. The measurements were performed with 120 GeV protons at varying beam intensitie

    Results of the QUENCH-DEBRIS test

    Get PDF

    Physical function assessment tools in pediatric rheumatology

    Get PDF
    Pediatric rheumatic diseases with predominant musculoskeletal involvement such as juvenile idiopathic arthritis (JIA) and juvenile dermatomyositis(JDM) can cause considerable physical functional impairment and significantly affect the children's quality of life (QOL). Physical function, QOL, health-related QOL (HRQOL) and health status are personal constructs used as outcomes to estimate the impact of these diseases and often used as proxies for each other. The chronic, fluctuating nature of these diseases differs within and between patients, and complicates the measurement of these outcomes. In children, their growing needs and expectations, limited use of age-specific questionnaires, and the use of proxy respondents further influences this evaluation. This article will briefly review the different constructs inclusive of and related to physical function, and the scales used for measuring them. An understanding of these instruments will enable assessment of functional outcome in clinical studies of children with rheumatic diseases, measure the impact of the disease and treatments on their lives, and guide us in formulating appropriate interventions

    Status of zero degree calorimeter for CMS experiment

    Get PDF
    The Zero Degree Calorimeter (ZDC) is integral part of the CMS experiment, especially, for heavy ion studies. The design of the ZDC includes two independent calorimeter sections: an electromagnetic section and a hadronic section. Sampling calorimeters using tungsten and quartz fibers have been chosen for the energy measurements. An overview of the ZDC is presented along with a current status of calorimeter's preparation for Day 1 of LHC

    Performance of the combined zero degree calorimeter for CMS

    Get PDF
    The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section 140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam.The combined zero degree calorimeter (ZDC) is a combination of sampling quartz/tungsten electromagnetic and hadronic calorimeters. Two identical combined calorimeters are located in the LHC tunnel at CERN at the straight section ~140 m on each side of the CMS interaction vertex and between the two beam pipes. They will detect very forward photons and neutrons. ZDC information can be used for a variety of physics measurements as well as improving the collision centrality determination in heavy-ion collisions. Results are presented for ZDC performance studies with the CERN SPS H2 test beam

    An intercomparison of CH3O2 measurements by Fluorescence Assay by Gas Expansion and Cavity Ring–Down Spectroscopy within HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry)

    Get PDF
    Simultaneous measurements of CH3O2 radical concentrations have been performed using two different methods in the Leeds HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) chamber at 295 K and in 80 mbar of a mixture of 3 : 1 He : O2 and 100 mbar or 1000 mbar of synthetic air. The first detection method consisted of the indirect detection of CH3O2 using the conversion of CH3O2 into CH3O by excess NO with subsequent detection of CH3O by fluorescence assay by gas expansion (FAGE). The FAGE instrument was calibrated for CH3O2 in two ways. In the first method, a known concentration of CH3O2 was generated using the 185 nm photolysis of water vapour in synthetic air at atmospheric pressure followed by the conversion of the generated OH radicals to CH3O2 by reaction with CH4 / O2. This calibration can be used for experiments performed in HIRAC at 1000 mbar in air. In the second method, calibration was achieved by generating a near steady-state of CH3O2 and then switching off the photolysis lamps within HIRAC and monitoring the subsequent decay of CH3O2 which was controlled via its self-reaction, and analysing the decay using second order kinetics. This calibration could be used for experiments performed at all pressures. In the second detection method, CH3O2 has been measured directly using Cavity Ring-Down Spectroscopy (CRDS) using the absorption at 7487.98 cm-1 in the A <– X (ν12) band with the optical path along the ~1.4 m chamber diameter. Analysis of the second-order kinetic decays of CH3O2 by self-reaction monitored by CRDS has been used for the determination of the CH3O2 absorption cross section at 7487.98 cm-1, both at 100 mbar of air and at 80 mbar of a 3 : 1 He : O2 mixture, from which σCH3O2 = (1.49 ± 0.19) × 10–20 cm2 molecule-1 was determined for both pressures. The absorption spectrum of CH3O2 between 7486 and 7491 cm-1 did not change shape when the total pressure was increased to 1000 mbar, from which we determined that σCH3O2 is independent of pressure over the pressure range 100–1000 mbar in air. CH3O2 was generated in HIRAC using either the photolysis of Cl2 with UV black lamps in the presence of CH4 and O2 or the photolysis of acetone at 254 nm in the presence of O2. At 1000 mbar of synthetic air the correlation plot of [CH3O2]FAGE against [CH3O2]CRDS gave a gradient of 1.10 ± 0.02. At 100 mbar of synthetic air the gradient of the FAGE – CRDS correlation plot had a gradient of 1.06 ± 0.01 and at 80 mbar of 3 : 1 He : O2 mixture the correlation plot gradient was 0.91 ± 0.02. These results provide a validation of the FAGE method to determine concentrations of CH3O2

    Quartz Plate Calorimeter as SLHC Upgrade to CMS Hadronic EndCap Calorimeters

    Get PDF
    Due to an expected increase in radiation damage under super-LHC conditions, we propose to substitute the scintillator tiles in the original design of the hadronic endcap (HE) calorimeter with quartz plates. Quartz is proved to be radiation hard by the radiation damage tests with electron, proton, neutron and gamma beams. Using wavelength shifting fibers, it is possible to collect efficiently the Cherenkov light generated in quartz plates. This paper summarizes the results from various test beams, bench tests, and Geant4 simulations done on methods of collecting light from quartz plates, as well as radiation hardness tests on quartz material
    • …
    corecore