6,856 research outputs found
Studying a relativistic field theory at finite chemical potential with the density matrix renormalization group
The density matrix renormalization group is applied to a relativistic complex
scalar field at finite chemical potential. The two-point function and various
bulk quantities are studied. It is seen that bulk quantities do not change with
the chemical potential until it is larger than the minimum excitation energy.
The technical limitations of the density matrix renormalization group for
treating bosons in relativistic field theories are discussed. Applications to
other relativistic models and to nontopological solitons are also suggested.Comment: 9 pages, 5 figures; v2: title changed; references added, conclusions
expanded, to be published in PR
Comparison of 3-D viscous flow computations of Mach 5 inlet with experimental data
A time marching 3-D full Navier-Stokes code, called PARC3D, is validated for an experimental Mach 5 inlet configuration using the data obtained in the 10 x 10 ft supersonic wind tunnel at the NASA Lewis Research Center. For the first time, a solution is obtained for this configuration with the actual geometry, the tunnel conditions, and all the bleed zones modeled in the computation. Pitot pressure profiles and static pressures at various locations in the inlet are compared with the corresponding experimental data. The effect of bleed zones, located in different places on the inlet walls, in eliminating the low energy vortical flow generated from the 3-D shock-boundary layer interaction is simulated very well even though some approximations are used in applying the bleed boundary conditions and in the turbulence model. A further detailed study of the effect of individual bleed ports is needed to understand fully the actual mechanism of efficiently eliminating the vortical flow from the inlet. A better turbulence model would help to improve the accuracy even further in predicting the corner flow boundary layer profiles
The suppression of magnetism and the development of superconductivity within the collapsed tetragonal phase of Ca0.67Sr0.33Fe2As2 at high pressure
Structural and electronic characterization of (Ca0.67Sr0.33)Fe2As2 has been
performed as a func- tion of pressure up to 12 GPa using conventional and
designer diamond anvil cells. The compound (Ca0.67Sr0.33)Fe2As2 behaves
intermediate between its end members-CaFe2As2 and SrFe2As2- displaying a
suppression of magnetism and the onset of superconductivity. Like other members
of the AEFe2As2 family, (Ca0.67Sr0.33)Fe2As2 undergoes a pressure-induced
isostructural volume collapse, which we associate with the development of As-As
bonding across the mirror plane of the structure. This collapsed tetragonal
phase abruptly cuts off the magnetic state, giving rise to superconductivity
with a maximum Tc=22.2 K. The maximum Tc of the superconducting phase is not
strongly correlated with any structural parameter, but its proximity to the
abrupt suppression of magnetism as well as the volume collapse transition
suggests that magnetic interactions and structural inhomogeneity may play a
role in its development. The pressure-dependent evolution of the ordered states
and crystal structures in (Ca,Sr)Fe2As2 provides an avenue to understand the
generic behavior of the other members of the AEFe2As2 family.Comment: 9 pages, 9 figure
Fluxoid formation: size effects and non-equilibrium universality
Simple causal arguments put forward by Kibble and Zurek suggest that the
scaling behaviour of condensed matter at continuous transitions is related to
the familiar universality classes of the systems at quasi-equilibrium. Although
proposed 25 years ago or more, it is only in the last few years that it has
been possible to devise experiments from which scaling exponents can be
determined and in which this scenario can be tested. In previous work, an
unusually high Kibble-Zurek scaling exponent was reported for spontaneous
fluxoid production in a single isolated superconducting Nb loop, albeit with
low density. Using analytic approximations backed up by Langevin simulations,
we argue that densities as small as these are too low to be attributable to
scaling, and are conditioned by the small size of the loop. We also reflect on
the physical differences between slow quenches and small rings, and derive some
criteria for these differences, noting that recent work on slow quenches does
not adequately explain the anomalous behaviour seen here.Comment: 7 pages, 4 figures, presentation given at CMMP 201
Defect formation in superconducting rings: external fields and finite-size effects
Consistent with the predictions of Kibble and Zurek, scaling behaviour has
been seen in the production of fluxoids during temperature quenches of
superconducting rings. However, deviations from the canonical behaviour arise
because of finite-size effects and stray external fields.
Technical developments, including laser heating and the use of long Josephson
tunnel junctions, have improved the quality of data that can be obtained. With
new experiments in mind we perform large-scale 3D simulations of quenches of
small, thin rings of various geometries with fully dynamical electromagnetic
fields, at nonzero externally applied magnetic flux. We find that the outcomes
are, in practice, indistinguishable from those of much simpler Gaussian
analytical approximations in which the rings are treated as one-dimensional
systems and the magnetic field fluctuation-free.Comment: 10 pages, 3 figures, presentation at QFS2012, to appear in JLT
Genomic islands of divergence in the Yellow Tang and the Brushtail Tang Surgeonfishes.
The current ease of obtaining thousands of molecular markers challenges the notion that full phylogenetic concordance, as proposed by phylogenetic species concepts, is a requirement for defining species delimitations. Indeed, the presence of genomic islands of divergence, which may be the cause, or in some cases the consequence, of speciation, precludes concordance. Here, we explore this issue using thousands of RAD markers on two sister species of surgeonfishes (Teleostei: Acanthuridae), Zebrasoma flavescens and Z. scopas, and several populations within each species. Species are readily distinguished based on their colors (solid yellow and solid brown, respectively), yet populations and species are neither distinguishable using mitochondrial markers (cytochrome c oxidase 1), nor using 5193 SNPs (pairwise Φst = 0.034). In contrast, when using outlier loci, some of them presumably under selection, species delimitations, and strong population structure follow recognized taxonomic positions (pairwise Φst = 0.326). Species and population delimitation differences based on neutral and selected markers are likely due to local adaptation, thus being consistent with the idea that these genomic islands of divergence arose as a consequence of isolation. These findings, which are not unique, raise the question of a potentially important pathway of divergence based on local adaptation that is only evident when looking at thousands of loci
- …