163 research outputs found

    Compilation of relations for the antisymmetric tensors defined by the Lie algebra cocycles of su(n)su(n)

    Full text link
    This paper attempts to provide a comprehensive compilation of results, many new here, involving the invariant totally antisymmetric tensors (Omega tensors) which define the Lie algebra cohomology cocycles of su(n)su(n), and that play an essential role in the optimal definition of Racah-Casimir operators of su(n)su(n). Since the Omega tensors occur naturally within the algebra of totally antisymmetrised products of λ\lambda-matrices of su(n)su(n), relations within this algebra are studied in detail, and then employed to provide a powerful means of deriving important Omega tensor/cocycle identities. The results include formulas for the squares of all the Omega tensors of su(n)su(n). Various key derivations are given to illustrate the methods employed.Comment: Latex file (run thrice). Misprints corrected, Refs. updated. Published in IJMPA 16, 1377-1405 (2001

    Superalgebra cohomology, the geometry of extended superspaces and superbranes

    Get PDF
    We present here a cohomological analysis of the new spacetime superalgebras that arise in the context of superbrane theory. They lead to enlarged superspaces that allow us to write D-brane actions in terms of fields associated with the additional superspace variables. This suggests that there is an extended superspace/worldvolume fields democracy for superbranes.Comment: 12 pages, LATEX. Invited lecture delivered at the XXXVII Karpacz Winter School on "New Developments in Fundamental Interaction Theories" (6-15 February, 2001, Karpacz, Poland). To be published in the Proceeding

    Topics on n-ary algebras

    Full text link
    We describe the basic properties of two n-ary algebras, the Generalized Lie Algebras (GLAs) and, particularly, the Filippov (or n-Lie) algebras (FAs), and comment on their n-ary Poisson counterparts, the Generalized Poisson (GP) and Nambu-Poisson (N-P) structures. We describe the Filippov algebra cohomology relevant for the central extensions and infinitesimal deformations of FAs. It is seen that semisimple FAs do not admit central extensions and, moreover, that they are rigid. This extends the familiar Whitehead's lemma to all n2n\geq 2 FAs, n=2 being the standard Lie algebra case. When the n-bracket of the FAs is no longer required to be fully skewsymmetric one is led to the n-Leibniz (or Loday's) algebra structure. Using that FAs are a particular case of n-Leibniz algebras, those with an anticommutative n-bracket, we study the class of n-Leibniz deformations of simple FAs that retain the skewsymmetry for the first n-1 entires of the n-Leibniz bracket.Comment: 11 page

    The Schouten-Nijenhuis bracket, cohomology and generalized Poisson structures

    Get PDF
    Newly introduced generalized Poisson structures based on suitable skew-symmetric contravariant tensors of even order are discussed in terms of the Schouten-Nijenhuis bracket. The associated `Jacobi identities' are expressed as conditions on these tensors, the cohomological contents of which is given. In particular, we determine the linear generalized Poisson structures which can be constructed on the dual spaces of simple Lie algebras.Comment: 29 pages. Plain TeX. Phyzzx needed. An example and some references added. To appear in J. Phys.

    Braided structure of fractional Z3Z_3-supersymmetry

    Get PDF
    It is shown that fractional Z3Z_3-superspace is isomorphic to the qexp(2πi/3)q\to\exp(2\pi i/3) limit of the braided line. Z3Z_3-supersymmetry is identified as translational invariance along this line. The fractional translation generator and its associated covariant derivative emerge as the qexp(2πi/3)q\to\exp(2\pi i/3) limits of the left and right derivatives from the calculus on the braided lineComment: 8 pages, LaTeX, submitted to Proceedings of the 5th Colloquium `Quantum groups and integrable systems', Prague, June 1996 (to appear in Czech. J. Phys.

    Optimally defined Racah-Casimir operators for su(n) and their eigenvalues for various classes of representations

    Full text link
    This paper deals with the striking fact that there is an essentially canonical path from the ii-th Lie algebra cohomology cocycle, i=1,2,...li=1,2,... l, of a simple compact Lie algebra \g of rank ll to the definition of its primitive Casimir operators C(i)C^{(i)} of order mim_i. Thus one obtains a complete set of Racah-Casimir operators C(i)C^{(i)} for each \g and nothing else. The paper then goes on to develop a general formula for the eigenvalue c(i)c^{(i)} of each C(i)C^{(i)} valid for any representation of \g, and thereby to relate c(i)c^{(i)} to a suitably defined generalised Dynkin index. The form of the formula for c(i)c^{(i)} for su(n)su(n) is known sufficiently explicitly to make clear some interesting and important features. For the purposes of illustration, detailed results are displayed for some classes of representation of su(n)su(n), including all the fundamental ones and the adjoint representation.Comment: Latex, 16 page
    corecore