186 research outputs found
Spiral model, jamming percolation and glass-jamming transitions
The Spiral Model (SM) corresponds to a new class of kinetically constrained
models introduced in joint works with D.S. Fisher [8,9]. They provide the first
example of finite dimensional models with an ideal glass-jamming transition.
This is due to an underlying jamming percolation transition which has
unconventional features: it is discontinuous (i.e. the percolating cluster is
compact at the transition) and the typical size of the clusters diverges faster
than any power law, leading to a Vogel-Fulcher-like divergence of the
relaxation time. Here we present a detailed physical analysis of SM, see [5]
for rigorous proofs. We also show that our arguments for SM does not need any
modification contrary to recent claims of Jeng and Schwarz [10].Comment: 9 pages, 7 figures, proceedings for StatPhys2
Spatial correlations in the relaxation of the Kob-Andersen model
We describe spatio-temporal correlations and heterogeneities in a kinetically
constrained glassy model, the Kob-Andersen model. The kinetic constraints of
the model alone induce the existence of dynamic correlation lengths, that
increase as the density increases, in a way compatible with a
double-exponential law. We characterize in detail the trapping time correlation
length, the cooperativity length, and the distribution of persistent clusters
of particles. This last quantity is related to the typical size of blocked
clusters that slow down the dynamics for a given density.Comment: 7 pages, 6 figures, published version (title has changed
On the study of jamming percolation
We investigate kinetically constrained models of glassy transitions, and
determine which model characteristics are crucial in allowing a rigorous proof
that such models have discontinuous transitions with faster than power law
diverging length and time scales. The models we investigate have constraints
similar to that of the knights model, introduced by Toninelli, Biroli, and
Fisher (TBF), but differing neighbor relations. We find that such knights-like
models, otherwise known as models of jamming percolation, need a ``No Parallel
Crossing'' rule for the TBF proof of a glassy transition to be valid.
Furthermore, most knight-like models fail a ``No Perpendicular Crossing''
requirement, and thus need modification to be made rigorous. We also show how
the ``No Parallel Crossing'' requirement can be used to evaluate the provable
glassiness of other correlated percolation models, by looking at models with
more stable directions than the knights model. Finally, we show that the TBF
proof does not generalize in any straightforward fashion for three-dimensional
versions of the knights-like models.Comment: 13 pages, 18 figures; Spiral model does satisfy property
The transition from a coherent optical vortex to a Rankine vortex: beam contrast dependence on topological charge
Spatially coherent helically phased light beams carry orbital angular momentum (OAM) and contain phase singularities at their centre. Destructive interference at the position of the phase singularity means the intensity at this point is necessarily zero, which results in a high contrast between the centre and the surrounding annular intensity distribution. Beams of reduced spatial coherence yet still carrying OAM have previously been referred to as Rankine vortices. Such beams no longer possess zero intensity at their centre, exhibiting a contrast that decreases as their spatial coherence is reduced. In this work, we study the contrast of a vortex beam as a function of its spatial coherence and topological charge. We show that beams carrying higher values of topological charge display a radial intensity contrast that is more resilient to a reduction in spatial coherence of the source
Facilitated spin models on Bethe lattice: bootstrap percolation, mode-coupling transition and glassy dynamics
We show that facilitated spin models of cooperative dynamics introduced by
Fredrickson and Andersen display on Bethe lattices a glassy behaviour similar
to the one predicted by the mode-coupling theory of supercooled liquids and the
dynamical theory of mean-field disordered systems. At low temperature such
cooperative models show a two-step relaxation and their equilibration time
diverges at a finite temperature according to a power-law. The geometric nature
of the dynamical arrest corresponds to a bootstrap percolation process which
leads to a phase space organization similar to the one of mean-field disordered
systems. The relaxation dynamics after a subcritical quench exhibits aging and
converges asymptotically to the threshold states that appear at the bootstrap
percolation transition.Comment: 7 pages, 6 figures, minor changes, final version to appear in
Europhys. Let
Relaxation times of kinetically constrained spin models with glassy dynamics
We analyze the density and size dependence of the relaxation time for
kinetically constrained spin systems. These have been proposed as models for
strong or fragile glasses and for systems undergoing jamming transitions. For
the one (FA1f) or two (FA2f) spin facilitated Fredrickson-Andersen model at any
density and for the Knight model below the critical density at which
the glass transition occurs, we show that the persistence and the spin-spin
time auto-correlation functions decay exponentially. This excludes the
stretched exponential relaxation which was derived by numerical simulations.
For FA2f in , we also prove a super-Arrhenius scaling of the form
. For FA1f in = we
rigorously prove the power law scalings recently derived in \cite{JMS} while in
we obtain upper and lower bounds consistent with findings therein.
Our results are based on a novel multi-scale approach which allows to analyze
in presence of kinetic constraints and to connect time-scales and
dynamical heterogeneities. The techniques are flexible enough to allow a
variety of constraints and can also be applied to conservative stochastic
lattice gases in presence of kinetic constraints.Comment: 4 page
Imaging with quantum states of light
The production of pairs of entangled photons simply by focusing a laser beam onto a crystal with a nonlinear optical response was used to test quantum mechanics and to open new approaches in imaging. The development of the latter was enabled by the emergence of single-photon-sensitive cameras that are able to characterize spatial correlations and high-dimensional entanglement. Thereby, new techniques emerged, such as ghost imaging of objects — in which the quantum correlations between photons reveal the image from photons that have never interacted with the object — or imaging with undetected photons by using nonlinear interferometers. In addition, quantum approaches in imaging can also lead to an improvement in the performance of conventional imaging systems. These improvements can be obtained by means of image contrast, resolution enhancement that exceeds the classical limit and acquisition of sub-shot-noise phase or amplitude images. In this Review, we discuss the application of quantum states of light for advanced imaging techniques
Jamming percolation and glassy dynamics
We present a detailed physical analysis of the dynamical glass-jamming
transition which occurs for the so called Knight models recently introduced and
analyzed in a joint work with D.S.Fisher \cite{letterTBF}. Furthermore, we
review some of our previous works on Kinetically Constrained Models.
The Knights models correspond to a new class of kinetically constrained
models which provide the first example of finite dimensional models with an
ideal glass-jamming transition. This is due to the underlying percolation
transition of particles which are mutually blocked by the constraints. This
jamming percolation has unconventional features: it is discontinuous (i.e. the
percolating cluster is compact at the transition) and the typical size of the
clusters diverges faster than any power law when . These
properties give rise for Knight models to an ergodicity breaking transition at
: at and above a finite fraction of the system is frozen. In
turn, this finite jump in the density of frozen sites leads to a two step
relaxation for dynamic correlations in the unjammed phase, analogous to that of
glass forming liquids. Also, due to the faster than power law divergence of the
dynamical correlation length, relaxation times diverge in a way similar to the
Vogel-Fulcher law.Comment: Submitted to the special issue of Journal of Statistical Physics on
Spin glasses and related topic
- …