5,451 research outputs found

    Geometric and combinatorial realizations of crystal graphs

    Full text link
    For irreducible integrable highest weight modules of the finite and affine Lie algebras of type A and D, we define an isomorphism between the geometric realization of the crystal graphs in terms of irreducible components of Nakajima quiver varieties and the combinatorial realizations in terms of Young tableaux and Young walls. For affine type A, we extend the Young wall construction to arbitrary level, describing a combinatorial realization of the crystals in terms of new objects which we call Young pyramids.Comment: 34 pages, 17 figures; v2: minor typos corrected; v3: corrections to section 8; v4: minor typos correcte

    Energy gaps and roton structure above the nu=1/2 Laughlin state of a rotating dilute Bose-Einstein condensate

    Full text link
    Exact diagonalization study of a rotating dilute Bose-Einstein condensate reveals that as the first vortex enters the system the degeneracy of the low-energy yrast spectrum is lifted and a large energy gap emerges. As more vortices enter with faster rotation, the energy gap decreases towards zero, but eventually the spectrum exhibits a rotonlike structure above the nu=1/2 Laughlin state without having a phonon branch despite the short-range nature of the interaction.Comment: 4 pages, 4 figures, 1 tabl

    High-Symmetry Polarization Domains in Low-Symmetry Ferroelectrics

    Full text link
    We present experimental evidence for hexagonal domain faceting in the ferroelectric polymer PVDF-TrFE films having the lower orthorhombic crystallographic symmetry. This effect can arise from purely electrostatic depolarizing forces. We show that in contrast to magnetic bubble shape domains where such type of deformation instability has a predominantly elliptical character, the emergence of more symmetrical circular harmonics is favored in ferroelectrics with high dielectric constant

    Weight Vectors of the Basic A_1^(1)-Module and the Littlewood-Richardson Rule

    Full text link
    The basic representation of \A is studied. The weight vectors are represented in terms of Schur functions. A suitable base of any weight space is given. Littlewood-Richardson rule appears in the linear relations among weight vectors.Comment: February 1995, 7pages, Using AMS-Te

    Vertex operators and the geometry of moduli spaces of framed torsion-free sheaves

    Full text link
    We define complexes of vector bundles on products of moduli spaces of framed rank r torsion-free sheaves on the complex projective plane. The top non-vanishing Chern classes of the cohomology of these complexes yield actions of the r-colored Heisenberg and Clifford algebras on the equivariant cohomology of the moduli spaces. In this way we obtain a geometric realization of the boson-fermion correspondence and related vertex operators.Comment: 36 pages; v2: Definition of geometric Heisenberg operators modified; v3: Minor typos correcte

    Vacuum entanglement governs the bosonic character of magnons

    Full text link
    It is well known that magnons, elementary excitations in a magnetic material, behave as bosons when their density is low. We study how the bosonic character of magnons is governed by the amount of a multipartite entanglement in the vacuum state on which magnons are excited. We show that if the multipartite entanglement is strong, magnons cease to be bosons. We also consider some examples, such as ground states of the Heisenberg ferromagnet and the transverse Ising model, the condensation of magnons, the one-way quantum computer, and Kitaev's toric code. Our result provides insights into the quantum statistics of elementary excitations in these models, and into the reason why a non-local transformation, such as the Jordan-Wigner transformation, is necessary for some many-body systems.Comment: 4 pages, no figur

    Lower bounds on Hilbert-Kunz multiplicities and maximal F-signature

    Get PDF
    ABSTRACT. Hilbert–Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptions. A natural question is for what singular rings these invariants are closest to one. For Hilbert–Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert–Kunz multiplicity.La Caixa Junior Leader Postdoctoral Fellowship: LCF/BQ/PI21/1183003

    Dynamical Properties in the Bilayer Quantum Hall Ferromagnet

    Full text link
    The spectral functions of the pseudospin correlation functions in the bilayer quantum Hall system at \nu=1 are investigated numerically, where the pseudospin describes the layer degrees of freedom. In the pseudospin-ferromagnetic phase, the lowest-energy excitation branch is closely connected with the ground state through the fluctuations of pseudospin S_y and S_z, and it plays a significant role on the tunneling properties in this system. For the system with very small tunneling amplitude and layer separation smaller than the critical one, the system-size dependence of calculated spectral function A_{y z} suggests the superfluidity on the tunneling current in the absence of impurities.Comment: 4 pages, 1 Postscript figur

    A crystal theoretic method for finding rigged configurations from paths

    Full text link
    The Kerov--Kirillov--Reshetikhin (KKR) bijection gives one to one correspondences between the set of highest paths and the set of rigged configurations. In this paper, we give a crystal theoretic reformulation of the KKR map from the paths to rigged configurations, using the combinatorial R and energy functions. This formalism provides tool for analysis of the periodic box-ball systems.Comment: 24 pages, version for publicatio

    Analyzing powers in inclusive pion production at high energy and the nucleon spin structure

    Get PDF
    Analyzing powers in inclusive pion production in high energy transversely polarized proton-proton collisions are studied theoretically in the framework of the quark recombination model. Calculations by assuming the SU(6) spin-flavor symmetry for the nucleon structure disagree with the experiments. We solve this difficulty by taking into account the %We overcome this difficulty by taking into account the realistic spin distribution functions of the nucleon, which differs from the SU(6) expectation at large xx, %but coincides with a perturbative QCD constraint on the ratio of the unpolarized valence distributions, u/d→5u/d \to 5 as x→1x \to 1. We also discuss the kaon spin asymmetry and find AN(K+)=−AN(K0)A_N(K^+) = -A_N(K^0) in the polarized proton-proton collisions at large xFx_F.Comment: 13 pages, 4 figures, late
    • …
    corecore