2,142 research outputs found
Instability of a two-dimensional extremal black hole
We consider the perturbation of tachyon about the extremal ground state of a
two-dimensional (2D) electrically charged black hole. It is found that the
presenting potential to on-coming tachyonic wave takes a double-humped barrier
well. This allows an exponentially growing mode with respect to time. This
extremal ground state is classically unstable. We conclude that the 2D extremal
electrically charged black hole cannot be a candidate for the stable endpoint
of the Hawking evaporation.Comment: 9 pages 2 figures, RevTeX, to be published in Phys. Rev D, to obtain
gifures contact Author ([email protected]
BTZ black hole and quantum Hall effect in the bulk/boundary dynamics
We point out an interesting analogy between the BTZ black hole and QHE
(Quantum Hall effect) in the (2+1)-dimensional bulk/boundary theories. It is
shown that the Chern-Simons/Liouville(Chern-Simons/chiral boson) is an
effective description for the BTZ black hole (QHE). Also the
IR(bulk)-UV(boundary) connection for a black hole information bound is realized
as the UV(low-lying excitations on bulk)-IR(long-range excitations on boundary)
connection in the QHE. An inflow of conformal anomaly( central charge)
onto the timelike boundary of AdS by the Noether current corresponds to an
inflow of chiral anomaly onto the edge of disk by the Hall current.Comment: 8 pages, this version to appear in Phys. Rev.
Unitarity issue in BTZ black holes
We study the wave equation for a massive scalar in three-dimensional
AdS-black hole spacetimes to understand the unitarity issues in a semiclassical
way. Here we introduce four interesting spacetimes: the non-rotating BTZ black
hole (NBTZ), pure AdS spacetime (PADS), massless BTZ black hole (MBTZ), and
extremal BTZ black hole (EBTZ). Our method is based on the potential analysis
and solving the wave equation to find the condition for the frequency
exactly. In the NBTZ case, one finds the quasinormal (complex and discrete)
modes which signals for a non-unitary evolution. Real and discrete modes are
found for the PADS case, which means that it is unitary obviously. On the other
hand, we find real and continuous modes for the two extremal black holes of
MBTZ and EBTZ. It suggests that these could be candidates for the unitary
system.Comment: 14 pages, contracted version to appear in MPL
Cosmic holographic bounds with UV and IR cutoffs
We introduce the cosmic holographic bounds with two UV and IR cutoff scales,
to deal with both the inflationary universe in the past and dark energy in the
future. To describe quantum fluctuations of inflation on sub-horizon scales, we
use the Bekenstein-Hawking energy bound. However, it is not justified that the
D-bound is satisfied with the coarse-grained entropy. The Hubble bounds are
introduced for classical fluctuations of inflation on super-horizon scales. It
turns out that the Hubble entropy bound is satisfied with the entanglement
entropy and the Hubble temperature bound leads to a condition for the slow-roll
inflation. In order to describe the dark energy, we introduce the holographic
energy density which is the one saturating the Bekenstein-Hawking energy bound
for a weakly gravitating system. Here the UV (IR) cutoff is given by the Planck
scale (future event horizon), respectively. As a result, we find the close
connection between quantum and classical fluctuations of inflation, and dark
energy.Comment: 15page
Neutron stars in a perturbative gravity model with strong magnetic fields
We investigate the effect of a strong magnetic field on the structure of
neutron stars in a model with perturbative gravity. The effect of an
interior strong magnetic field of about G on the equation of
state is derived in the context of a quantum hadrodynamics (QHD) model. We
solve the modified spherically symmetric hydrostatic equilibrium equations
derived for a gravity model with . Effects of both the
finite magnetic field and the modified gravity are detailed for various values
of the magnetic field and the perturbation parameter along with a
discussion of their physical implications. We show that there exists a
parameter space of the modified gravity and the magnetic field strength, in
which even a soft equation of state can accommodate a large ( M)
maximum neutron star mass through the modified mass-radius relation
- …