49,728 research outputs found

    Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases

    Get PDF
    This paper proposes two-stage hybrid feature selection algorithms to build the stable and efficient diagnostic models where a new accuracy measure is introduced to assess the models. The two-stage hybrid algorithms adopt Support Vector Machines (SVM) as a classification tool, and the extended Sequential Forward Search (SFS), Sequential Forward Floating Search (SFFS), and Sequential Backward Floating Search (SBFS), respectively, as search strategies, and the generalized F-score (GF) to evaluate the importance of each feature. The new accuracy measure is used as the criterion to evaluated the performance of a temporary SVM to direct the feature selection algorithms. These hybrid methods combine the advantages of filters and wrappers to select the optimal feature subset from the original feature set to build the stable and efficient classifiers. To get the stable, statistical and optimal classifiers, we conduct 10-fold cross validation experiments in the first stage; then we merge the 10 selected feature subsets of the 10-cross validation experiments, respectively, as the new full feature set to do feature selection in the second stage for each algorithm. We repeat the each hybrid feature selection algorithm in the second stage on the one fold that has got the best result in the first stage. Experimental results show that our proposed two-stage hybrid feature selection algorithms can construct efficient diagnostic models which have got better accuracy than that built by the corresponding hybrid feature selection algorithms without the second stage feature selection procedures. Furthermore our methods have got better classification accuracy when compared with the available algorithms for diagnosing erythemato-squamous diseases

    Recent Trends in Hospitalization for Acute Myocardial Infarction in Beijing: Increasing Overall Burden and a Transition From ST-Segment Elevation to Non-ST-Segment Elevation Myocardial Infarction in a Population-Based Study

    Get PDF
    Comparable data on trends of hospitalization rates for ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) remain unavailable in representative Asian populations.To examine the temporal trends of hospitalization for acute myocardial infarction (AMI) and its subtypes in Beijing.Patients hospitalized for AMI in Beijing from January 1, 2007 to December 31, 2012 were identified from the validated Hospital Discharge Information System. Trends in hospitalization rates, in-hospital mortality, length of stay (LOS), and hospitalization costs were analyzed by regression models for total AMI and for STEMI and NSTEMI separately. In total, 77,943 patients were admitted for AMI in Beijing during the 6 years, among whom 67.5% were males and 62.4% had STEMI. During the period, the rate of AMI hospitalization per 100,000 population increased by 31.2% (from 55.8 to 73.3 per 100,000 population) after age standardization, with a slight decrease in STEMI but a 3-fold increase in NSTEMI. The ratio of STEMI to NSTEMI decreased dramatically from 6.5:1.0 to 1.3:1.0. The age-standardized in-hospital mortality decreased from 11.2% to 8.6%, with a significant decreasing trend evident for STEMI in males and females (P < 0.001) and for NSTEMI in males (P = 0.02). The rate of percutaneous coronary intervention increased from 28.7% to 55.6% among STEMI patients. The total cost for AMI hospitalization increased by 56.8% after adjusting for inflation, although the LOS decreased by 1 day.The hospitalization burden for AMI has been increasing in Beijing with a transition from STEMI to NSTEMI. Diverse temporal trends in AMI subtypes from the unselected "real-world" data in Beijing may help to guide the management of AMI in China and other developing countries

    Extending twin support vector machine classifier for multi-category classification problems

    Get PDF
    © 2013 – IOS Press and the authors. All rights reservedTwin support vector machine classifier (TWSVM) was proposed by Jayadeva et al., which was used for binary classification problems. TWSVM not only overcomes the difficulties in handling the problem of exemplar unbalance in binary classification problems, but also it is four times faster in training a classifier than classical support vector machines. This paper proposes one-versus-all twin support vector machine classifiers (OVA-TWSVM) for multi-category classification problems by utilizing the strengths of TWSVM. OVA-TWSVM extends TWSVM to solve k-category classification problems by developing k TWSVM where in the ith TWSVM, we only solve the Quadratic Programming Problems (QPPs) for the ith class, and get the ith nonparallel hyperplane corresponding to the ith class data. OVA-TWSVM uses the well known one-versus-all (OVA) approach to construct a corresponding twin support vector machine classifier. We analyze the efficiency of the OVA-TWSVM theoretically, and perform experiments to test its efficiency on both synthetic data sets and several benchmark data sets from the UCI machine learning repository. Both the theoretical analysis and experimental results demonstrate that OVA-TWSVM can outperform the traditional OVA-SVMs classifier. Further experimental comparisons with other multiclass classifiers demonstrated that comparable performance could be achieved.This work is supported in part by the grant of the Fundamental Research Funds for the Central Universities of GK201102007 in PR China, and is also supported by Natural Science Basis Research Plan in Shaanxi Province of China (Program No.2010JM3004), and is at the same time supported by Chinese Academy of Sciences under the Innovative Group Overseas Partnership Grant as well as Natural Science Foundation of China Major International Joint Research Project (NO.71110107026)

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Local Structure and It's Effect on The Ferromagnetic Properties of La0.5_{0.5}Sr0.5_{0.5}CoO3_3 thin films}

    Full text link
    We have used high-resolution Extended X-ray Absorption Fine-Structure and diffraction techniques to measure the local structure of strained La0.5_{0.5}Sr0.5_{0.5}CoO3_3 films under compression and tension. The lattice mismatch strain in these compounds affects both the bond lengths and the bond angles, though the larger effect on the bandwidth is due to the bond length changes. The popular double exchange model for ferromagnetism in these compounds provides a correct qualitative description of the changes in Curie temperature TCT_C, but quantitatively underestimates the changes. A microscopic model for ferromagnetism that provides a much stronger dependence on the structural distortions is needed.Comment: 4 pages, 4 figure

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Could mergers become more sustainable? A study of the stock exchange mergers of NASDAQ and OMX

    Get PDF
    This study investigates whether the merger of NASDAQ and OMX could reduce the portfolio diversification possibilities for stock market investors and whether it is necessary to implement national policies and international treaties for the sustainable development of financial markets. Our study is very important because some players in the stock markets have not yet realized that stock exchanges, during the last decades, have moved from government-owned or mutually-owned organizations to private companies, and, with several mergers having occurred, the market is tending gradually to behave like a monopoly. From our analysis, we conclude that increased volatility and reduced diversification opportunities are the results of an increase in the long-run comovement between each pair of indices in Nordic and Baltic stock markets (Denmark, Sweden, Finland, Estonia, Latvia, and Lithuania) and NASDAQ after the merger. We also find that the merger tends to improve the error-correction mechanism for NASDAQ so that it Granger-causes OMX, but OMX loses predictive power on NASDAQ after the merger. We conclude that the merger of NASDAQ and OMX reduces the diversification possibilities for stock market investors and our findings provide evidence to support the argument that it is important to implement national policies and international treaties for the sustainable development of financial markets

    An exactly solvable phase transition model: generalized statistics and generalized Bose-Einstein condensation

    Full text link
    In this paper, we present an exactly solvable phase transition model in which the phase transition is purely statistically derived. The phase transition in this model is a generalized Bose-Einstein condensation. The exact expression of the thermodynamic quantity which can simultaneously describe both gas phase and condensed phase is solved with the help of the homogeneous Riemann-Hilbert problem, so one can judge whether there exists a phase transition and determine the phase transition point mathematically rigorously. A generalized statistics in which the maximum occupation numbers of different quantum states can take on different values is introduced, as a generalization of Bose-Einstein and Fermi-Dirac statistics.Comment: 17 pages, 2 figure

    Microbubble Cavitation Imaging

    Get PDF
    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 mu s. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented
    corecore