2,450 research outputs found
Physical rehabilitation for critical illness myopathy and neuropathy (Protocol)
Protocol for a review - no abstract
Deformed Skyrme Crystals
The Skyrme crystal, a solution of the Skyrme model, is the lowest
energy-per-charge configuration of skyrmions seen so far. Our numerical
investigations show that, as the period in various space directions is changed,
one obtains various other configurations, such as a double square wall, and
parallel vortex-like solutions. We also show that there is a sudden "phase
transition" between a Skyrme crystal and the charge 4 skyrmion with cubic
symmetry as the period is gradually increased in all three space directions.Comment: 13 pages, 6 figures. To be published in JHE
Band structure of helimagnons in MnSi resolved by inelastic neutron scattering
A magnetic helix realizes a one-dimensional magnetic crystal with a period
given by the pitch length . Its spin-wave excitations -- the
helimagnons -- experience Bragg scattering off this periodicity leading to gaps
in the spectrum that inhibit their propagation along the pitch direction. Using
high-resolution inelastic neutron scattering the resulting band structure of
helimagnons was resolved by preparing a single crystal of MnSi in a single
magnetic-helix domain. At least five helimagnon bands could be identified that
cover the crossover from flat bands at low energies with helimagnons basically
localized along the pitch direction to dispersing bands at higher energies. In
the low-energy limit, we find the helimagnon spectrum to be determined by a
universal, parameter-free theory. Taking into account corrections to this
low-energy theory, quantitative agreement is obtained in the entire energy
range studied with the help of a single fitting parameter.Comment: 5 pages, 3 figures; (v2) slight modifications, published versio
Nanometer Scale Mapping of the Density of States in an Inhomogeneous Superconductor
Using high speed scanning tunneling spectroscopy, we perform a full mapping
of the quasiparticle density of states (DOS) in single crystals of
BiPbSrCaCuO(2212). The measurements carried out at 5 K showed a complex spatial
pattern of important variations of the local DOS on the nanometer scale.
Superconducting areas are co-existing with regions of a smooth and larger
gap-like DOS structure. The superconducting regions are found to have a minimum
size of about 3 nm. The role of Pb-introduced substitutional disorder in the
observed spatial variations of the local DOS is discussed.Comment: 4 page Letter with 3 figures (2 color figures
Misallocation and Productivity in Colombia’S Manufacturing Industries
Following Hsieh and Klenow (2009), this paper studies productivity dispersions in Colombian industrial establishments using the Colombian Annual Manufacturing Survey (AMS) from 1982 to 1998. The United States is used as a benchmark to estimate the reallocation of capital and labor to equalize marginal products across plants in Colombia. Gains are found in manufacturing Total Factor Productivity (TFP) of approximately 3-8 percent and TPF is positively correlated with exporting status, age, size, and location in the central region of the country. There is also suggestive evidence that opening the economy in 1991 is associated with an increase in plant productivity levels for firms that export goods. The 1990 reform that reduced dismissal costs is associated with an increase in productivity, while the reform that increased labor costs in 1993 is associated with a decrease in plants productivity. Further work is needed to establish a causal relation between productivity and policy changes
First direct observation of the Van Hove singularity in the tunneling spectra of cuprates
In two-dimensional lattices the electronic levels are unevenly spaced, and
the density of states (DOS) displays a logarithmic divergence known as the Van
Hove singularity (VHS). This is the case in particular for the layered cuprate
superconductors. The scanning tunneling microscope (STM) probes the DOS, and is
therefore the ideal tool to observe the VHS. No STM study of cuprate
superconductors has reported such an observation so far giving rise to a debate
about the possibility of observing directly the normal state DOS in the
tunneling spectra. In this study, we show for the first time that the VHS is
unambiguously observed in STM measurements performed on the cuprate Bi-2201.
Beside closing the debate, our analysis proves the presence of the pseudogap in
the overdoped side of the phase diagram of Bi-2201 and discredits the scenario
of the pseudogap phase crossing the superconducting dome.Comment: 4 pages, 4 figure
Geometric phase effects for wavepacket revivals
The study of wavepacket revivals is extended to the case of Hamiltonians
which are made time-dependent through the adiabatic cycling of some parameters.
It is shown that the quantal geometric phase (Berry's phase) causes the revived
packet to be displaced along the classical trajectory, by an amount equal to
the classical geometric phase (Hannay's angle), in one degree of freedom. A
physical example illustrating this effect in three degrees of freedom is
mentioned.Comment: Revtex, 11 pages, no figures
Vortex Imaging in the pi-Band of Magnesium Diboride
We report scanning tunneling spectroscopy imaging of the vortex lattice in
single crystalline MgB2. By tunneling parallel to the c-axis, a single
superconducting gap (Delta = 2.2 meV) associated with the pi-band is observed.
The vortices in the pi-band have a large core size compared to estimates based
on Hc2, and show an absence of localized states in the core. Furthermore,
superconductivity between the vortices is rapidly suppressed by an applied
field. These results suggest that superconductivity in the pi-band is, at least
partially, induced by the intrinsically superconducting sigma-band.Comment: 4 pages, 3 figure
Geometrically Induced Gauge Structure on Manifolds Embedded in a Higher Dimensional Space
We explain in a context different from that of Maraner the formalism for
describing motion of a particle, under the influence of a confining potential,
in a neighbourhood of an n-dimensional curved manifold M^n embedded in a
p-dimensional Euclidean space R^p with p >= n+2. The effective Hamiltonian on
M^n has a (generally non-Abelian) gauge structure determined by geometry of
M^n. Such a gauge term is defined in terms of the vectors normal to M^n, and
its connection is called the N-connection. In order to see the global effect of
this type of connections, the case of M^1 embedded in R^3 is examined, where
the relation of an integral of the gauge potential of the N-connection (i.e.,
the torsion) along a path in M^1 to the Berry's phase is given through Gauss
mapping of the vector tangent to M^1. Through the same mapping in the case of
M^1 embedded in R^p, where the normal and the tangent quantities are exchanged,
the relation of the N-connection to the induced gauge potential on the
(p-1)-dimensional sphere S^{p-1} (p >= 3) found by Ohnuki and Kitakado is
concretely established. Further, this latter which has the monopole-like
structure is also proved to be gauge-equivalent to the spin-connection of
S^{p-1}. Finally, by extending formally the fundamental equations for M^n to
infinite dimensional case, the present formalism is applied to the field theory
that admits a soliton solution. The resultant expression is in some respects
different from that of Gervais and Jevicki.Comment: 52 pages, PHYZZX. To be published in Int. J. Mod. Phys.
Scanning Tunneling Spectroscopy on Single Crystal MgB2
We report on the results of scanning tunneling spectroscopy measurements on
single crystals of Mg2. Tunneling was performed both parallel and perpendicular
to the crystalline c-axis. In the first case, a single superconducting gap
(Delta_pi = 2.2 meV) associated with the pi-band is observed. Tunneling
parallel to the ab-plane reveals an additional, larger gap (Delta_sigma ~ 7
meV) originating in the highly two-dimensional sigma-band. Vortex imaging in
the pi-band was performed with the field and tunnel current parallel to the
c-axis. The vortices have a large core size compared to estimates based on Hc2,
and show an absence of localized states in the core. Furthermore,
superconductivity between the vortices is rapidly suppressed by an applied
field. A comparison to specific heat measurements is performed.Comment: 12 pages, 7 figs. Submitted to Physica
- …