12,363 research outputs found
Kleshchev's decomposition numbers and branching coefficients in the Fock space
10.1090/S0002-9947-07-04202-XTransactions of the American Mathematical Society36031179-119
Cocommutative coalgebras: homotopy theory and Koszul duality
We extend a construction of Hinich to obtain a closed model category
structure on all differential graded cocommutative coalgebras over an
algebraically closed field of characteristic zero. We further show that the
Koszul duality between commutative and Lie algebras extends to a Quillen
equivalence between cocommutative coalgebras and formal coproducts of curved
Lie algebras.Comment: 38 page
High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers
This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB
A detailed description of the uncertainty analysis for High Area Ratio Rocket Nozzle tests at the NASA Lewis Research Center
A preliminary uncertainty analysis has been performed for the High Area Ratio Rocket Nozzle test program which took place at the altitude test capsule of the Rocket Engine Test Facility at the NASA Lewis Research Center. Results from the study establish the uncertainty of measured and calculated parameters required for the calculation of rocket engine specific impulse. A generalized description of the uncertainty methodology used is provided. Specific equations and a detailed description of the analysis are presented. Verification of the uncertainty analysis model was performed by comparison with results from the experimental program's data reduction code. Final results include an uncertainty for specific impulse of 1.30 percent. The largest contributors to this uncertainty were calibration errors from the test capsule pressure and thrust measurement devices
Scheme for direct measurement of a general two-qubit Hamiltonian
The construction of two-qubit gates appropriate for universal quantum
computation is of enormous importance to quantum information processing.
Building such gates is dependent on accurate knowledge of the interaction
dynamics between two qubit systems. This letter will present a systematic
method for reconstructing the full two-qubit interaction Hamiltonian through
experimental measures of concurrence. This not only gives a convenient method
for constructing two qubit quantum gates, but can also be used to
experimentally determine various Hamiltonian parameters in physical systems. We
show explicitly how this method can be employed to determine the first and
second order spin-orbit corrections to the exchange coupling in quantum dots.Comment: 4 Pages, 1 Figur
Asymmetric Spin-wave Dispersion on Fe(110): Direct Evidence of Dzyaloshinskii--Moriya Interaction
The influence of the Dzyaloshinskii-Moriya interaction on the spin-wave
dispersion in an Fe double layer grown on W(110) is measured for the first
time. It is demonstrated that the Dzyaloshinskii-Moriya interaction breaks the
degeneracy of spin waves and leads to an asymmetric spin-wave dispersion
relation. An extended Heisenberg spin Hamiltonian is employed to obtain the
longitudinal component of the Dzyaloshinskii-Moriya vectors from the
experimentally measured energy asymmetry
Divergent nematic susceptibility in an iron arsenide superconductor
Within the Landau paradigm of continuous phase transitions, ordered states of
matter are characterized by a broken symmetry. Although the broken symmetry is
usually evident, determining the driving force behind the phase transition is
often a more subtle matter due to coupling between otherwise distinct order
parameters. In this paper we show how measurement of the divergent nematic
susceptibility of an iron pnictide superconductor unambiguously distinguishes
an electronic nematic phase transition from a simple ferroelastic distortion.
These measurements also reveal an electronic nematic quantum phase transition
at the composition with optimal superconducting transition temperature.Comment: 8 pages, 8 figure
Conceptual Design of a Communication-Based Deep Space Navigation Network
As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system
Quantum Bit Regeneration
Decoherence and loss will limit the practicality of quantum cryptography and
computing unless successful error correction techniques are developed. To this
end, we have discovered a new scheme for perfectly detecting and rejecting the
error caused by loss (amplitude damping to a reservoir at T=0), based on using
a dual-rail representation of a quantum bit. This is possible because (1)
balanced loss does not perform a ``which-path'' measurement in an
interferometer, and (2) balanced quantum nondemolition measurement of the
``total'' photon number can be used to detect loss-induced quantum jumps
without disturbing the quantum coherence essential to the quantum bit. Our
results are immediately applicable to optical quantum computers using single
photonics devices.Comment: 4 pages, postscript only, figures available at
http://feynman.stanford.edu/qcom
- …
