40,084 research outputs found

    Morphological characterization of shocked porous material

    Full text link
    Morphological measures are introduced to probe the complex procedure of shock wave reaction on porous material. They characterize the geometry and topology of the pixelized map of a state variable like the temperature. Relevance of them to thermodynamical properties of material is revealed and various experimental conditions are simulated. Numerical results indicate that, the shock wave reaction results in a complicated sequence of compressions and rarefactions in porous material. The increasing rate of the total fractional white area AA roughly gives the velocity DD of a compressive-wave-series. When a velocity DD is mentioned, the corresponding threshold contour-level of the state variable, like the temperature, should also be stated. When the threshold contour-level increases, DD becomes smaller. The area AA increases parabolically with time tt during the initial period. The A(t)A(t) curve goes back to be linear in the following three cases: (i) when the porosity δ\delta approaches 1, (ii) when the initial shock becomes stronger, (iii) when the contour-level approaches the minimum value of the state variable. The area with high-temperature may continue to increase even after the early compressive-waves have arrived at the downstream free surface and some rarefactive-waves have come back into the target body. In the case of energetic material ... (see the full text)Comment: 3 figures in JPG forma

    New mechanism for the enhancement of sdsd dominance in interacting boson models

    Get PDF
    We introduce an exactly solvable model for interacting bosons that extend up to high spin and interact through a repulsive pairing force. The model exhibits a phase transition to a state with almost complete sdsd dominance. The repulsive pairing interaction that underlies the model has a natural microscopic origin in the Pauli exclusion principle between contituent nucleons. As such, repulsive pairing between bosons seems to provide a new mechanism for the enhancement of sdsd dominance, giving further support for the validity of the sdsd Interacting Boson Model.Comment: 4 pages, 2 figure

    An Ultra-fast DOA Estimator with Circular Array Interferometer Using Lookup Table Method

    Get PDF
    The time-consuming phase ambiguity resolution makes the uniform circular array (UCA) interferometer not suitable for real-time direction-of-arrival (DOA) estimation. This paper introduces the lookup table (LUT) method to solve this problem. The key of the method is that we look up the ambiguity numbers instead of the eventual DOA from the table, and then the DOA is obtained by relatively small amount of calculation. This makes it possible that we are able to shrink the table size while maintain the DOA estimation accuracy. The table addresses cover all possible measured phase differences (PDs), which enables the method to be free of spatial scanning. Moreover, without adding frequency index to the lookup table, the estimator can realize wideband application. As an example, a field-programmable gate array (FPGA) based DOA estimator with the estimation time of 180 ns is presented, accompanied by the measured results. This method possesses the advantages of ultra-high speed, high accuracy and low memory usage

    Tackling Challenges in Seebeck Coefficient Measurement of Ultra-High Resistance Samples with an AC Technique

    Get PDF
    Seebeck coefficient is a widely studied semiconductor property. Conventional Seebeck coefficient measurements are based on DC voltage measurement. Normally this is performed on samples with moderate resistances (e.g., below a few MΩ level). Certain semiconductors are intrinsic and highly resistive. Many examples can be found in optical and photovoltaic materials. The hybrid halide perovskites that have gained extensive attention recently are a good example. Despite great attention from the materials and physics communities, few successful studies exist of the Seebeck coefficient of these compounds, for example CH3NH3PbI3. An AC-technique-based Seebeck coefficient measurement is reported, which makes high-quality Seebeck voltage measurements on samples with resistances up to the 100 GΩ level. This is achieved through a specifically designed setup to enhance sample isolation and increase capacitive impedance. As a demonstration, Seebeck coefficient measurement of a CH3NH3PbI3 thin film is performed at dark, with sample resistance 150 GΩ, and found S = +550 µV K−1. The strategy reported could be applied to the studies of fundamental transport parameters of all intrinsic semiconductors that have not been feasible

    Estimating factor models for multivariate volatilities : an innovation expansion method

    Get PDF
    We introduce an innovation expansion method for estimation of factor models for conditional variance (volatility) of a multivariate time series. We estimate the factor loading space and the number of factors by a stepwise optimization algorithm on expanding the "white noise space". Simulation and a real data example are given for illustration

    Lattice gas model for fragmentation: From Argon on Scandium to Gold on Gold

    Get PDF
    The recent fragmentation data for central collisions of Gold on Gold are even qualitatively different from those for central collisions of Argon on Scandium. The latter can be fitted with a lattice gas model calculation. Effort is made to understand why the model fails for Gold on Gold. The calculation suggests that the large Coulomb interaction which is operative for the larger system is responsible for this discrepancy. This is demonstrated by mapping the lattice gas model to a molecular dynamics calculation for disassembly. This mapping is quite faithful for Argon on Scandium but deviates strongly for Gold on Gold. The molecular dynamics calculation for disassembly reproduces the characteristics of the fragmentation data for both Gold on Gold and Argon on Scandium.Comment: 13 pages, Revtex, 8 figures in ps files, submitted to Phys. Rev.

    Exact isovector pairing in a shell-model framework: Role of proton-neutron correlations in isobaric analog states

    Get PDF
    We utilize a nuclear shell model Hamiltonian with only two adjustable parameters to generate, for the first time, exact solutions for pairing correlations for light to medium-mass nuclei, including the challenging proton-neutron pairs, while also identifying the primary physics involved. In addition to single-particle energy and Coulomb potential terms, the shell model Hamiltonian consists of an isovector T=1T=1 pairing interaction and an average proton-neutron isoscalar T=0T=0 interaction, where the T=0T=0 term describes the average interaction between non-paired protons and neutrons. This Hamiltonian is exactly solvable, where, utilizing 3 to 7 single-particle energy levels, we reproduce experimental data for 0+^+ state energies for isotopes with mass A=10A=10 through A=62A=62 exceptionally well including isotopes from He to Ge. Additionally, we isolate effects due to like-particle and proton-neutron pairing, provide estimates for the total and proton-neutron pairing gaps, and reproduce NN (neutron) = ZZ (proton) irregularity. These results provide a further understanding for the key role of proton-neutron pairing correlations in nuclei, which is especially important for waiting-point nuclei on the rp-path of nucleosynthesis.Comment: 10 pages, 4 figure

    Unique Thermal Properties of Clothing Materials.

    Get PDF
    Cloth wearing seems so natural that everyone is self-deemed knowledgeable and has some expert opinions about it. However, to clearly explain the physics involved, and hence to make predictions for clothing design or selection, it turns out to be quite challenging even for experts. Cloth is a multiphased, porous, and anisotropic material system and usually in multilayers. The human body acts as an internal heat source in a clothing situation, thus forming a temperature gradient between body and ambient. But unlike ordinary engineering heat transfer problems, the sign of this gradient often changes as the ambient temperature varies. The human body also perspires and the sweat evaporates, an effective body cooling process via phase change. To bring all the variables into analysis quickly escalates into a formidable task. This work attempts to unravel the problem from a physics perspective, focusing on a few rarely noticed yet critically important mechanisms involved so as to offer a clearer and more accurate depiction of the principles in clothing thermal comfort
    corecore