11 research outputs found

    Protection against Clostridium difficile infection in a hamster model by oral vaccination using flagellin FliC-loaded pectin beads

    Get PDF
    International audienceClostridium difficile flagellin FliC is a highly immunogenic pathogen-associated molecular pattern playing a key role in C. difficile pathogenesis and gut colonization. Here, we designed an oral vaccine against C. difficile with FliC encapsulated into pectin beads for colonic release. Bead stability and FliC retention was confirmed in vitro using simulated intestinal media (SIM), while bead degradation and FliC release was observed upon incubation in simulated colonic media (SCM). The importance of FliC encapsulation into pectin beads for protection against C. difficile was assessed in a vaccination assay using a lethal ham-ster model of C. difficile infection. Three groups of hamsters orally received either FliC-loaded beads or unloaded beads in gastro-resistant capsule to limit gastric degradation or free FliC. Two other groups were immunized with free FliC, one intra-rectally and the other intra-peritoneally. Hamsters were then challenged with a lethal dose of C. difficile VPI 10463. Fifty percent of hamsters orally immunized with FliC-loaded beads survived whereas all hamsters orally immunized with free FliC died within 7 days post challenge. No significant protection was observed in the other groups. Only intra-peritoneally immunized hamsters presented anti-FliC IgG antibodies in sera after immunizations. These results suggest that an oral immunization with FliC-loaded beads probably induced a mucosal immune response, therefore providing a protective effect. This study confirms the importance of FliC encapsulation into pectin beads for a protective oral vaccine against C. difficile

    Molecular features of lipoprotein CD0873 - a potential vaccine against the human pathogen Clostridioides difficile

    Get PDF
    This is the final version. Available on open access from the American Society for Biochemistry and Molecular Biology via the DOI in this recordClostridioides difficile is the primary cause of antibiotic-associated diarrhoea and colitis, a healthcare-associated intestinal disease resulting in a significant fatality rate. Colonization of the gut is critical for C. difficile pathogenesis, and the bacterial molecules essential for efficient colonization therefore offer great potential as vaccine candidates. Here we present findings demonstrating that the C. difficile immunogenic lipoprotein CD0873 plays a critical role in pathogen success in vivo. We found that in a dixenic colonization model, a CD0873-positive strain of C. difficile significantly outcompeted a CD0873-negative strain. Immunization of mice with recombinant CD0873 prevented long-term gut colonization and was correlated with a strong secretory IgA immune response. We further present high-resolution crystal structures of CD0873, at 1.80-2.50 Ă… resolutions, offering a first view of the ligand-binding pocket of CD0873 and provide evidence that this lipoprotein adhesin is part of a tyrosine import system, an amino acid key in C. difficile infection. These findings suggest that CD0873 could serve as a effective component in a vaccine against C. difficile
    corecore