239 research outputs found

    Succinct representation of triangulations with a boundary

    Get PDF
    We consider the problem of designing succinct geometric data structures while maintaining efficient navigation operations. A data structure is said succinct if the asymptotic amount of space it uses matches the entropy of the class of structures represented. For the case of planar triangulations with a boundary we propose a succinct representation of the combinatorial information that improves to 2.175 bits per triangle the asymptotic amount of space required and that supports the navigation between adjacent triangles in constant time (as well as other standard operations). For triangulations with mm faces of a surface with genus g, our representation requires asymptotically an extra amount of 36(g-1)lg m bits (which is negligible as long as g << m/lg m)

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures

    Evaluating Signs of Determinants Using Single-Precision Arithmetic

    Get PDF
    We propose a method of evaluating signs of 2×2 and 3×3 determinants with b-bit integer entries using only b and (b + 1)-bit arithmetic, respectively. This algorithm has numerous applications in geometric computation and provides a general and practical approach to robustness. The algorithm has been implemented and compared with other exact computation methods

    Extracting surface representations from rim curves

    Get PDF
    LNCS v. 3852 is the conference proceedings of ACCV 2006In this paper, we design and implement a novel method for constructing a mixed triangle/quadrangle mesh from the 3D space curves (rims) estimated from the profiles of an object in an image sequence without knowing the original 3D topology of the object. To this aim, a contour data structure for representing visual hull, which is different from that for CT/MRI, is introduced. In this paper, we (1) solve the "branching structure" problem by introducing some additional "directed edge", and (2) extract a triangle/ quadrangle closed mesh from the contour structure with an algorithm based on dynamic programming. Both theoretical demonstration and real world results show that our proposed method has sufficient robustness with respect to the complex topology of the object, and the extracted mesh is of high quality. © Springer-Verlag Berlin Heidelberg 2006.postprintThe 7th Asian Conference on Computer Vision (ACCV 2006), Hyderabad, India, 13-16 January 2006. In Lecture Notes in Computer Science, 2006, v. 3852, p. 732-74

    Parallel Mapper

    Full text link
    The construction of Mapper has emerged in the last decade as a powerful and effective topological data analysis tool that approximates and generalizes other topological summaries, such as the Reeb graph, the contour tree, split, and joint trees. In this paper, we study the parallel analysis of the construction of Mapper. We give a provably correct parallel algorithm to execute Mapper on multiple processors and discuss the performance results that compare our approach to a reference sequential Mapper implementation. We report the performance experiments that demonstrate the efficiency of our method

    Bringing Order to Special Cases of Klee's Measure Problem

    Full text link
    Klee's Measure Problem (KMP) asks for the volume of the union of n axis-aligned boxes in d-space. Omitting logarithmic factors, the best algorithm has runtime O*(n^{d/2}) [Overmars,Yap'91]. There are faster algorithms known for several special cases: Cube-KMP (where all boxes are cubes), Unitcube-KMP (where all boxes are cubes of equal side length), Hypervolume (where all boxes share a vertex), and k-Grounded (where the projection onto the first k dimensions is a Hypervolume instance). In this paper we bring some order to these special cases by providing reductions among them. In addition to the trivial inclusions, we establish Hypervolume as the easiest of these special cases, and show that the runtimes of Unitcube-KMP and Cube-KMP are polynomially related. More importantly, we show that any algorithm for one of the special cases with runtime T(n,d) implies an algorithm for the general case with runtime T(n,2d), yielding the first non-trivial relation between KMP and its special cases. This allows to transfer W[1]-hardness of KMP to all special cases, proving that no n^{o(d)} algorithm exists for any of the special cases under reasonable complexity theoretic assumptions. Furthermore, assuming that there is no improved algorithm for the general case of KMP (no algorithm with runtime O(n^{d/2 - eps})) this reduction shows that there is no algorithm with runtime O(n^{floor(d/2)/2 - eps}) for any of the special cases. Under the same assumption we show a tight lower bound for a recent algorithm for 2-Grounded [Yildiz,Suri'12].Comment: 17 page

    On the computation of zone and double zone diagrams

    Full text link
    Classical objects in computational geometry are defined by explicit relations. Several years ago the pioneering works of T. Asano, J. Matousek and T. Tokuyama introduced "implicit computational geometry", in which the geometric objects are defined by implicit relations involving sets. An important member in this family is called "a zone diagram". The implicit nature of zone diagrams implies, as already observed in the original works, that their computation is a challenging task. In a continuous setting this task has been addressed (briefly) only by these authors in the Euclidean plane with point sites. We discuss the possibility to compute zone diagrams in a wide class of spaces and also shed new light on their computation in the original setting. The class of spaces, which is introduced here, includes, in particular, Euclidean spheres and finite dimensional strictly convex normed spaces. Sites of a general form are allowed and it is shown that a generalization of the iterative method suggested by Asano, Matousek and Tokuyama converges to a double zone diagram, another implicit geometric object whose existence is known in general. Occasionally a zone diagram can be obtained from this procedure. The actual (approximate) computation of the iterations is based on a simple algorithm which enables the approximate computation of Voronoi diagrams in a general setting. Our analysis also yields a few byproducts of independent interest, such as certain topological properties of Voronoi cells (e.g., that in the considered setting their boundaries cannot be "fat").Comment: Very slight improvements (mainly correction of a few typos); add DOI; Ref [51] points to a freely available computer application which implements the algorithms; to appear in Discrete & Computational Geometry (available online

    On the spine of a PDE surface

    Get PDF
    yesThe spine of an object is an entity that can characterise the object¿s topology and describes the object by a lower dimension. It has an intuitive appeal for supporting geometric modelling operations. The aim of this paper is to show how a spine for a PDE surface can be generated. For the purpose of the work presented here an analytic solution form for the chosen PDE is utilised. It is shown that the spine of the PDE surface is then computed as a by-product of this analytic solution. This paper also discusses how the of a PDE surface can be used to manipulate the shape. The solution technique adopted here caters for periodic surfaces with general boundary conditions allowing the possibility of the spine based shape manipulation for a wide variety of free-form PDE surface shapes
    corecore