9,327 research outputs found

    Density Matrix Renormalization Group Applied to the Ground State of the XY-Spin-Peierls System

    Full text link
    We use the density matrix renormalization group (DMRG) to map out the ground state of a XY-spin chain coupled to dispersionless phonons of frequency ω% \omega . We confirm the existence of a critical spin-phonon coupling cω0.7% \alpha _c\propto \omega ^{0.7} for the onset of the spin gap bearing the signature of a Kosterlitz-Thouless transition. We also observe a classical-quantum crossover when the spin-Peierls gap Δ\Delta is of order % \omega . In the classical regime, Δ>ω\Delta >\omega , the mean-field parameters are strongly renormalized by non-adiabatic corrections. This is the first application of the DMRG to phonons.Comment: 10 pages, 5 figures. To be published in PR

    Iron Displacements and Magnetoelastic Coupling in the Spin-Ladder Compound BaFe2Se3

    Full text link
    We report long-range ordered antiferromagnetism concomitant with local iron displacements in the spin-ladder compound BaFe2_2Se3_3. Short-range magnetic correlations, present at room temperature, develop into long-range antiferromagnetic order below TN_N = 256 K, with no superconductivity down to 1.8 K. Built of ferromagnetic Fe4_4 plaquettes, the magnetic ground state correlates with local displacements of the Fe atoms. These iron displacements imply significant magnetoelastic coupling in FeX4_4-based materials, an ingredient hypothesized to be important in the emergence of superconductivity. This result also suggests that knowledge of these local displacements is essential for properly understanding the electronic structure of these systems. As with the copper oxide superconductors two decades ago, our results highlight the importance of reduced dimensionality spin ladder compounds in the study of the coupling of spin, charge, and atom positions in superconducting materials

    Ground-state properties of the One-dimensional Kondo Lattice at partial Band-filling

    Full text link
    We compute the magnetic structure factor, the singlet correlation function and the momentum distribution of the one-dimensional Kondo lattice model at the density ρ=0.7\rho =0.7. The density matrix-renormalization group method is used. We show that in the weak-coupling regime, the ground state is paramagnetic. We argue that a Luttinger liquid description of the model in this region is consistent with our calculations . In the strong-coupling regime, the ground state becomes ferromagnetic. The conduction electrons show a spinless-fermion like behavior.Comment: 8 pages, Latex, 5 figures included, to be published in PRB (Rapid Communications

    Phase diagram of the one-dimensional Holstein model of spinless fermions

    Get PDF
    The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalisation group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the anti-adiabatic regime and is consistent with renormalisation group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.Comment: Minor changes. 4 pages, 4 figures. To appear in Physical Review Letters 80 (1998) 560

    Is Current Irrigation Sustainable in the United States? An Integrated Assessment of Climate Change Impact on Water Resources and Irrigated Crop Yields

    Get PDF
    While the impact of climate change on crop yields has been extensively studied, the quantification of water shortages on irrigated crop yields has been regarded as more challenging due to the complexity of the water resources management system. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling (IGSM) framework, an integrated assessment model that links a model of the global economy to an Earth system model. While accounting for uncertainty in climate change, we assess the effects of climate and socio-economic changes on the competition for water resources between industrial, energy, domestic and irrigation; the implications for water availability for irrigation; and the subsequent impacts on crop yields in the US by 2050. We find that climate and socio-economic changes will increase water shortages and strongly reduce irrigated crop yields in specific regions (mostly in the Southwest), or for specific crops (i.e. cotton and forage). While the most affected regions are usually not major crop growers, the heterogeneous response of crop yield to global change and water stress suggests that some level of adaptation can be expected, such as the relocation of cropland area to regions where irrigation is more sustainable. Finally, GHG mitigation has the potential to alleviate the effect of water stress on irrigated crop yields—enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.This work was partially funded by the U.S. Environmental Protection Agency’s Climate Change Division, under Cooperative Agreement No. XA-83600001 and by the U.S. Department of Energy, Office of Biological and Environmental Research, under grant DE-FG02-94ER61937. The Joint Program on the Science and Policy of Global Change is funded by a number of federal agencies and a consortium of 40 industrial and foundation sponsors. (For the complete list see http://globalchange.mit.edu/sponsors/current.html)

    Orbital Selective Magnetism in the Spin-Ladder Iron Selenides Ba1x_{1-x}Kx_{x}Fe2_2Se3_3

    Full text link
    Here we show that the 2.80(8) {\mu}B/Fe block antiferromagnetic order of BaFe2Se3 transforms into stripe antiferromagnetic order in KFe2Se3 with a decrease in moment to 2.1(1) {\mu}B/Fe. This reduction is larger than expected from the change in electron count from Ba2+^{2+} to K+^{+}, and occurs with the loss of the displacements of Fe atoms from ideal positions in the ladders, as found by neutron pair distribution function analysis. Intermediate compositions remain insulating, and magnetic susceptibility measurements show a suppression of magnetic order and probable formation of a spin-glass. Together, these results imply an orbital-dependent selection of magnetic versus bonded behavior, driven by relative bandwidths and fillings.Comment: Final versio

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time

    Interaction of propafenone and mexiletine

    Get PDF

    Influence of the anion potential on the charge ordering in quasi-one dimensional charge transfer salts

    Full text link
    We examine the various instabilities of quarter-filled strongly correlated electronic chains in the presence of a coupling to the underlying lattice. To mimic the physics of the (TMTTF)2_2X Bechgaard-Fabre salts we also include electrostatic effects of intercalated anions. We show that small displacements of the anion can stabilize new mixed Charged Density Wave-Bond Order Wave phases in which central symmetry centers are suppressed. This finding is discussed in the context of recent experiments. We suggest that the recently observed charge ordering is due to a cooperative effect between the Coulomb interaction and the coupling of the electronic stacks to the anions. On the other hand, the Spin-Peierls instability at lower temperature requires a Peierls-like lattice coupling.Comment: Latex, 4 pages, 4 postscript figure
    corecore