142 research outputs found

    New constraints on dust emission and UV attenuation of z=6.5-7.5 galaxies from millimeter observations

    Get PDF
    We have targeted two recently discovered Lyman break galaxies (LBGs) to search for dust continuum and [CII] 158 micron line emission. The strongly lensed z~6.8 LBG A1703-zD1 behind the galaxy cluster Abell 1703, and the spectroscopically confirmed z=7.508 LBG z8-GND-5296 in the GOODS-N field have been observed with the Plateau de Bure interferometer (PdBI) at 1.2mm. These observations have been combined with those of three z>6.5 Lya emitters (named HCM6A, Himiko, and IOK-1), for which deep measurements were recently obtained with the PdBI and ALMA. [CII] is undetected in both galaxies, providing a deep upper limit for Abell1703-zD1, comparable to recent ALMA non-detections. Dust continuum emission from Abell1703-zD1 and z8-GND-5296 is not detected with an rms of 0.12 and 0.16 mJy/beam. From these non-detections we derive upper limits on their IR luminosity and star formation rate, dust mass, and UV attenuation. Thanks to strong gravitational lensing the limit for Abell1703-zD1 is probing the sub-LIRG regime (LIR<8.1×1010L_{IR} <8.1 \times 10^{10} Lsun) and very low dust masses (Md<1.6×107M_d<1.6 \times 10^7 Msun). We find that all five galaxies are compatible with the Calzetti IRX-ÎČ\beta relation, their UV attenuation is compatible with several indirect estimates from other methods (the UV slope, extrapolation of the attenuation measured from the IR/UV ratio at lower redshift, and SED fits), and the dust-to-stellar mass ratio is not incompatible with that of galaxies from z=0 to 3. For their stellar mass the high-z galaxies studied here have an attenuation below the one expected from the mean relation of low redshift (z<1.5) galaxies. More and deeper (sub)-mm data are clearly needed to directly determine the UV attenuation and dust content of the dominant population of high-z star-forming galaxies and to establish more firmly their dependence on stellar mass, redshift, and other properties.Comment: 10 pages, 7 figures. Minor revisions. Accepted for publication in A&

    Probing Very Bright End of Galaxy Luminosity Function at z >~ 7 Using Hubble Space Telescope Pure Parallel Observations

    Get PDF
    We report the first results from the Hubble Infrared Pure Parallel Imaging Extragalactic Survey, which utilizes the pure parallel orbits of the Hubble Space Telescope to do deep imaging along a large number of random sightlines. To date, our analysis includes 26 widely separated fields observed by the Wide Field Camera 3, which amounts to 122.8 sq.arcmin in total area. We have found three bright Y098-dropouts, which are candidate galaxies at z >~ 7.4. One of these objects shows an indication of peculiar variability and its nature is uncertain. The other two objects are among the brightest candidate galaxies at these redshifts known to date L>2L*. Such very luminous objects could be the progenitors of the high-mass Lyman break galaxis (LBGs) observed at lower redshifts (up to z~5). While our sample is still limited in size, it is much less subject to the uncertainty caused by "cosmic variance" than other samples because it is derived using fields along many random sightlines. We find that the existence of the brightest candidate at z~7.4 is not well explained by the current luminosity function (LF) estimates at z~8. However, its inferred surface density could be explained by the prediction from the LFs at z~7 if it belongs to the high-redshift tail of the galaxy population at z~7.Comment: ApJL in press (accepted Dec. 27, 2010); minor corrections and one figure added to address referee's comment

    ALMA detection of [CII] 158 micron emission from a strongly lensed z=2 star-forming galaxy

    Get PDF
    Our objectives are to determine the properties of the interstellar medium (ISM) and of star-formation in typical star-forming galaxies at high redshift. Following up on our previous multi-wavelength observations with HST, Spitzer, Herschel, and the Plateau de Bure Interferometer (PdBI), we have studied a strongly lensed z=2.013 galaxy, the arc behind the galaxy cluster MACS J0451+0006, with ALMA to measure the [CII] 158 micron emission line, one of the main coolants of the ISM. [CII] emission from the southern part of this galaxy is detected at 10 σ\sigma. Taking into account strong gravitational lensing, which provides a magnification of ÎŒ=49\mu=49, the intrinsic lensing-corrected [CII]158 micron luminosity is L(CII)=1.2×108L⊙L(CII)=1.2 \times 10^8 L_\odot. The observed ratio of [CII]-to-IR emission, L(CII)/L(FIR)≈(1.2−2.4)×10−3L(CII)/L(FIR) \approx (1.2-2.4) \times 10^{-3}, is found to be similar to that in nearby galaxies. The same also holds for the observed ratio L(CII)/L(CO)=2.3×103L(CII)/L(CO)=2.3 \times 10^3, which is comparable to that of star-forming galaxies and active galaxy nuclei (AGN) at low redshift. We utilize strong gravitational lensing to extend diagnostic studies of the cold ISM to an order of magnitude lower luminosity (L(IR)∌(1.1−1.3)×1011L⊙L(IR) \sim (1.1-1.3) \times 10^{11} L_\odot) and SFR than previous work at high redshift. While larger samples are needed, our results provide evidence that the cold ISM of typical high redshift galaxies has physical characteristics similar to normal star forming galaxies in the local Universe.Comment: 5 pages, 4 figures. Accepted for publication in Astronomy & Astrophysics, Letter

    Spectral Energy Distributions of Type 1 AGN in the COSMOS Survey I - The XMM-COSMOS Sample

    Get PDF
    The "Cosmic Evolution Survey" (COSMOS) enables the study of the Spectral Energy Distributions (SEDs) of Active Galactic Nuclei (AGN) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present a SED catalog of 413 X-ray (\xmm) selected type 1 (emission line FWHM>2000>2000 km s−1^{-1}) AGN with Magellan, SDSS or VLT spectrum. The SEDs are corrected for the Galactic extinction, for broad emission line contributions, constrained variability, and for host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame ∌8ÎŒm\sim 8\mu m-- 4000\AA), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available on-line.Comment: 22 pages, 22 figures, ApJ accepted, scheduled to be published October 20th, 2012, v75

    Detections of CO Molecular Gas in 24um-Bright ULIRGs at z~2 in the Spitzer First Look Survey

    Get PDF
    We present CO observations of 9 ULIRGs at z~2 with S(24\mu m)>1mJy, previously confirmed with the mid-IR spectra in the Spitzer First Look Survey. All targets are required to have accurate redshifts from Keck/GEMINI near-IR spectra. Using the Plateau de Bure millimeter-wave Interferometer (PdBI) at IRAM, we detect CO J(3-2) [7 objects] or J(2-1) [1 object] line emission from 8 sources with integrated intensities Ic ~(5-9)sigma. The CO detected sources have a variety of mid-IR spectra, including strong PAH, deep silicate absorption and power-law continuum, implying that these molecular gas rich objects at z~2 could be either starbursts or dust obscured AGNs. The measured line luminosity L'[CO] is (1.28-3.77)e+10[K km/s pc^2]. The averaged molecular gas mass M(H2) is 1.7e+10Msun, assuming CO-to-H2 conversion factor of 0.8Msun/[K km/s pc^2]. Three sources (33%) -- MIPS506, MIPS16144 & MIPS8342 -- have double peak velocity profiles. The CO double peaks in MIPS506 and MIPS16144 show spatial separations of 45kpc and 10.9kpc, allowing the estimates of the dynamical masses of 3.2e+11*sin^(-2)(i)Msun and 5.4e+11*sin^{-2}(i)Msun respectively. The implied gas fraction, M(gas)/M(dyn), is 3% and 4%, assuming an average inclination angle. Finally, the analysis of the HST/NIC2 images, mid-IR spectra and IR SED revealed that most of our sources are mergers, containing dust obscured AGNs dominating the luminosities at (3-6)um. Together, these results provide some evidence suggesting SMGs, bright 24um z~2 ULIRGs and QSOs could represent three different stages of a single evolutionary sequence, however, a complete physical model would require much more data, especially high spatial resolution spectroscopy.Comment: 15 pages, 8 figures, accepted for publication in ApJ

    Deep GALEX Imaging of the HST/COSMOS Field: A First Look at the Morphology of z~0.7 Star-forming Galaxies

    Get PDF
    We present a study of the morphological nature of redshift z~0.7 star-forming galaxies using a combination of HST/ACS, GALEX and ground-based images of the COSMOS field. Our sample consists of 8,146 galaxies, 5,777 of which are detected in the GALEX near-ultraviolet band down to a limiting magnitude of 25.5 (AB). We make use of the UV to estimate star formation rates, correcting for the effect of dust using the UV-slope, and compute, from the ACS F814W images, the C,A,S,G,M20 morphological parameters for all objects in our sample. We observe a morphological bimodality in the galaxy population and show that it has a strong correspondence with the FUV - g color bimodality. We conclude that UV-optical color predominantly evolves concurrently with morphology. We observe many of the most star-forming galaxies to have morphologies approaching that of early-type galaxies, and interpret this as evidence that strong starburst events are linked to bulge growth and constitute a process through which galaxies can be brought from the blue to the red sequence while simultaneously modifying their morphology accordingly. We conclude that the red sequence has continued growing at z~<0.7. We also observe z~0.7 galaxies to have physical properties similar to that of local galaxies, except for higher star formation rates. Whence we infer that the dimming of star-forming galaxies is responsible for most of the evolution in the star formation rate density of the Universe since that redshift, although our data are also consistent with a mild number evolution. [abridged]Comment: 29 pages including 22 figures. Accepted for publication in ApJS COSMOS Special Issue. A copy of the paper with high resolution figures is available at http://www.astro.columbia.edu/~michel/galex_cosmos_paper.pd

    Photometric Redshifts of Galaxies in COSMOS

    Get PDF
    We measure photometric redshifts and spectral types for galaxies in the COSMOS survey. We use template fitting technique combined with luminosity function priors and with the option to simultaneously estimate dust extinction (i.e. E(B-V)) for each galaxy.Our estimated redshifts are accurate to i<25 and z~1.2. Using simulations with sampling and noise characteristics similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios and the number of bands used. From the simulations we find that the ratio of derived 95% confidence interval in the redshift probability distribution to the estimated photometric redshift (D95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. We compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z < 1.2 from zCOSMOS. Considering different scenarios, depending on using prior, no prior and/or extinction, we compare the photometric and spectroscopic redshifts for this sample. This corresponds to an rms scatter of 0.031, with a small number of outliers (<2.5%). We also find good agreement (rms=0.10) between photometric and spectroscopic redshifts for Type II AGNs. We compare results from our photometric redshift procedure with three other independent codes and find them in excellent agreement. We show preliminary results, based on photometric redshifts for the entire COSMOS sample (to i < 25 mag.).Comment: 38 pages; 14 Figures; 7 Tables. Accepted for Publication in ApJS. COSMOS Special Issu

    HST Morphologies of z ~ 2 Dust-Obscured Galaxies II: Bump Sources

    Get PDF
    We present Hubble Space Telescope (HST) imaging of 22 ultra-luminous infrared galaxies (ULIRGs) at z~2 with extremely red R-[24] colors (called dust-obscured galaxies, or DOGs) which have a local maximum in their spectral energy distribution (SED) at rest-frame 1.6um associated with stellar emission. These sources, which we call "bump DOGs", have star-formation rates of 400-4000 Msun/yr and have redshifts derived from mid-IR spectra which show strong polycyclic aromatic hydrocarbon emission --- a sign of vigorous on-going star-formation. Using a uniform morphological analysis, we look for quantifiable differences between bump DOGs, power-law DOGs (Spitzer-selected ULIRGs with mid-IR SEDs dominated by a power-law and spectral features that are more typical of obscured active galactic nuclei than starbursts), sub-millimeter selected galaxies (SMGs), and other less-reddened ULIRGs from the Spitzer extragalactic First Look Survey (XFLS). Bump DOGs are larger than power-law DOGs (median Petrosian radius of 8.4 +/- 2.7 kpc vs. 5.5 +/- 2.3 kpc) and exhibit more diffuse and irregular morphologies (median M_20 of -1.08 +/- 0.05 vs. -1.48 +/- 0.05). These trends are qualitatively consistent with expectations from simulations of major mergers in which merging systems during the peak star-formation rate period evolve from M_20 = -1.0 to M_20 = -1.7. Less obscured ULIRGs (i.e., non-DOGs) tend to have more regular, centrally peaked, single-object morphologies rather than diffuse and irregular morphologies. This distinction in morphologies may imply that less obscured ULIRGs sample the merger near the end of the peak star-formation rate period. Alternatively, it may indicate that the intense star-formation in these less-obscured ULIRGs is not the result of a recent major merger.Comment: Accepted to ApJ; 22 pages, 8 Figures, 7 Table

    The First Release COSMOS Optical and Near-IR Data and Catalog

    Get PDF
    We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3um and 2.4um. These include data taken on the Subaru 8.3m telescope, the KPNO and CTIO 4m telescopes, and the CFHT 3.6m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving.Comment: 19 pages, 13 figures, 14 tables, Accepted to ApJS for COSMOS speciall issu
    • 

    corecore