3,551 research outputs found

    Determination of absorption length of CO2 and high power diode laser radiation for ordinary Portland cement and its influence on the depth of melting

    Get PDF
    The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for concrete have been determined. By employing Beer-Lambert’s law the absorption lengths for concrete of CO2 and a HPDL radiation were 47022 m and 17715 m respectively. Indeed, this was borne out somewhat from a cross-sectional analysis of the melt region produced by both lasers which showed melting occurred to a greater depth when the CO2 laser was used

    Time Dependent Effects and Transport Evidence for Phase Separation in La_{0.5}Ca_{0.5}MnO_{3}

    Full text link
    The ground state of La_{1-x}Ca_{x}MnO_{3} changes from a ferromagnetic metallic to an antiferromagnetic charge-ordered state as a function of Ca concentration at x ~ 0.50. We present evidence from transport measurements on a sample with x = 0.50 that the two phases can coexist, in agreement with other observations of phase separation in these materials. We also observe that, by applying and then removing a magnetic field to the mainly charge-ordered state at some temperatures, we can "magnetically anneal" the charge order, resulting in a higher zero-field resistivity. We also observe logarithmic time dependence in both resistivity and magnetization after a field sweep at low temperatures.Comment: 9 pages, LATEX, 3 postscript figure

    The wear characteristics of a high power diode laser generated glaze on the ordinary Portland cement surface of concrete

    Get PDF
    The ordinary Portland cement (OPC) surface layer of concrete, which was glazed using a high power diode laser (HPDL), has been tested in order to determine the wear characteristics of the glaze. The work showed that the generation of a surface glaze resulted in the considerable enhancement of the wear characteristics over an untreated OPC surface of concrete. Within both normal and corrosive (detergent, NaOH and HNO3) environmental conditions the wear rate of the HPDL generated glaze was 3.5 mg.cm-2.h-1. In contrast, the untreated OPC surface of concrete exhibited a wear rate of 9.8 - 114.8 mg.cm-2.h-1 when exposed to the various reagents. Life assessment testing revealed that the laser glazed OPC surfaces effected an increase in actual wear life of 1.3 to 17.7 times over the untreated OPC surface of concrete, depending upon the corrosive environment. The reasons for these marked improvements in the wear resistance and wear life of the HPDL generated glaze over the untreated OPC surface of concrete can be attributed to firstly, the vitrification of the OPC surface after HPDL treatment which subsequently created a much more dense and consolidated surface, and secondly, the generation of a surface with improved microstructure and phase which is more resistant in corrosive environments

    Anomalous ferromagnetic spin fluctuations in an antiferromagnetic insulator Pr_{1-x}Ca_{x}MnO_{3}

    Full text link
    The high temperature paramagnetic state in an antiferromagnetic (AFM) insulator Pr_{1-x}Ca_{x}MnO_{3} is characterized by the ferromagnetic (FM) spin fluctuations with an anomalously small energy scale. The FM fluctuations show a precipitous decrease of the intensity at the charge ordering temperature T_{CO}, but persist below T_{CO}, and vanish at the AFM transition temperature T_{N}. These results demonstrate the importance of the spin ordering for the complete switching of the FM fluctuation in doped manganites.Comment: REVTeX, 5 pages, 4 figures, submitted to Phys. Rev.

    A comparative analysis of the wear characteristics of glazes generated on the ordinary Portland cement surface of concrete by means of CO2 and high power diode laser radiation

    Get PDF
    The wear characteristics of a glaze generated on the ordinary Portland cement (OPC) surface of concrete using a 2 kW high power diode laser (HPDL) and a 3 kW CO2 laser have been determined. Within both normal and corrosive environmental conditions, the wear rate of the CO2 and HPDL generated glazes were consistently higher than the untreated OPC surface of concrete. Life assessment testing revealed that surface glazing of the OPC with both the CO2 and the HPDL effected an increase in wear life of 1.3 to 17.7 times over an untreated OPC surface, depending upon the corrosive environment. The reasons for these marked improvements in the wear resistance and wear life of the CO2 and HPDL generated glazes over the untreated OPC surface of concrete can be attributed to the partial (CO2 laser) and full (HPDL) vitrification of the OPC surface after laser treatment which subsequently created a much more dense and consolidated surface with improved microstructure and phase characteristics which is more resistant in corrosive environments. In addition, the wear life and the wear rate of the HPDL glaze was found to be consistently higher than that of the CO2 laser glaze. This is due to the fact that CO2 and HPDLs have very different wavelengths; consequently, differences exist between the CO2 and HPDL beam absorption characteristics of the OPC. Such differences give rise to different cooling rates, solidification speeds, etc and are, therefore, the cause of the distinct glaze characteristics which furnishing each microstructure with its own unique wear resistance characteristics

    Magnetic-Field-Induced 4f-Octupole in CeB6 Probed by Resonant X-ray Diffraction

    Get PDF
    CeB6, a typical Gamma_8-quartet system, exhibits a mysterious antiferroquadrupolar ordered phase in magnetic fields, which is considered as originating from the T_{xyz}-type magnetic octupole moment induced by the field. By resonant x-ray diffraction in magnetic fields, we have verified that the T_{xyz}-type octupole is indeed induced in the 4f-orbital of Ce with a propagation vector (1/2, 1/2, 1/2), thereby supporting the theory. We observed an asymmetric field dependence of the intensity for an electric quadrupole (E2) resonance when the field was reversed, and extracted a field dependence of the octupole by utilizing the interference with an electric dipole (E1) resonance. The result is in good agreement with that of the NMR-line splitting, which reflects the transferred hyperfine field at the Boron nucleus from the anisotropic spin distribution of Ce with an O_{xy}-type quadrupole. The field-reversal method used in the present study opens up the possibility of being widely applied to other multipole ordering systems such as NpO2, Ce_{x}La_{1-x}B_{6}, SmRu_{4}P_{12}, and so on.Comment: 5 pages, 4 figures, submitte

    Surface glazing of concrete using a 2.5 kW high power diode laser and the effects of large beam geometry

    Get PDF
    Interaction of a 2.5 kW high power diode laser (HPDL) beam with the ordinary Portland cement (OPC) surface of concrete has been investigated, resulting in the generation of a tough, inexpensive amorphous glaze. Life assessment testing revealed that the OPC glaze had an increase in wear life of 1.3 to 14.8 times over an untreated OPC surface, depending upon the corrosive environment. Also, variations in the width of the HPDL beam were seen to have a considerable affect on the melt depth. Furthermore, the maximum coverage rate that it may be possible to achieve using the HPDL was calculated as being 1.94 m2/h. It is a distinct possibility that the economic and material benefits to be gained from the deployment of such an effective and efficient large area coating on OPC could be significant

    Magnetization of La(2-x)Sr(x)NiO(4+ delta) (0 < x < 0.5) and observation of novel memory effects

    Full text link
    We have studied the magnetization of a series of spin-charge ordered La(2-x)Sr(x)NiO(4+delta) single crystals with 0 < x < 0.5. For fields applied parallel to the ab plane there is a large irreversibility below a temperature T(F1) ~ 50 K and a smaller irreversibility that persists up to near the charge ordering temperature. We observed a novel memory effect in the thermo-remnant magnetization across the entire doping range. We found that these materials retain a memory of the temperature at which an external field was removed, and that there is a pronounced increase in the thermo-remnant magnetization when the system is warmed through a spin reorientation transition.Comment: 11 pages, 12 figure
    • …
    corecore