7,247 research outputs found

    Infrared sky noise study

    Get PDF
    The hardware and techniques to measure and compare sky noise at several sites were studied, and a device was developed that would maximize its output and minimize its output for modulation. The instrument and its functions are described. The nature of sky emissions and the fluctuation, gaseous sources of sky noise, and aerosol sources are discussed. It is concluded that sky noise really exists, and the spatial distribution of the sky noise sources are such that observed noise values are linear functions of chopping stroke

    Monodromy in the CMB: Gravity Waves and String Inflation

    Get PDF
    We present a simple mechanism for obtaining large-field inflation, and hence a gravitational wave signature, from string theory compactified on twisted tori. For Nil manifolds, we obtain a leading inflationary potential proportional to phi^(2/3) in terms of the canonically normalized field phi, yielding predictions for the tilt of the power spectrum and the tensor-to-scalar ratio, ns≈0.98n_s\approx 0.98 and r≈0.04r\approx 0.04 with 60 e-foldings of inflation; we note also the possibility of a variant with a candidate inflaton potential proportional to phi^(2/5). The basic mechanism involved in extending the field range -- monodromy in D-branes as they move in circles on the manifold -- arises in a more general class of compactifications, though our methods for controlling the corrections to the slow-roll parameters require additional symmetries.Comment: 43 pages, latex. 4 figure

    Method and apparatus for aligning a laser beam projector Patent

    Get PDF
    Laser beam projector for continuous, precise alignment between target, laser generator, and astronomical telescope during trackin

    Wavefront sensing of atmospheric phase distortions at the Palomar 200-in. telescope and implications for adaptive optics

    Get PDF
    Major efforts in astronomical instrumentation are now being made to apply the techniques of adaptive optics to the correction of phase distortions induced by the turbulent atmosphere and by quasi-static aberrations in telescopes themselves. Despite decades of study, the problem of atmospheric turbulence is still only partially understood. We have obtained video-rate (30 Hz) imaging of stellar clusters and of single-star phase distortions over the pupil of the 200" Hale telescope on Palomar Mountain. These data show complex temporal and spatial behavior, with multiple components arising at a number of scale heights in the atmosphere; we hope to quantify this behavior to ensure the feasibility of adaptive optics at the Observatory. We have implemented different wavefront sensing techniques to measure aperture phase in wavefronts from single stars, including the classical Foucault test, which measures the local gradient of phase, and the recently-devised curvature sensing technique, which measures the second derivative of pupil phase and has formed the real-time wavefront sensor for some very productive astronomical adaptive optics. Our data, though not fast enough to capture all details of atmospheric phase fluctuations, provide important information regarding the capabilities that must be met by the adaptive optics system now being built for the 200" telescope by a team at the Jet Propulsion Lab. We describe our data acquisition techniques, initial results from efforts to characterize the properties of the turbulent atmosphere at Palomar Mountain, and future plans to extract additional quantitative parameters of use for adaptive optics performance predictions
    • …
    corecore