30 research outputs found

    The Evolution of Mammalian Gene Families

    Get PDF
    Gene families are groups of homologous genes that are likely to have highly similar functions. Differences in family size due to lineage-specific gene duplication and gene loss may provide clues to the evolutionary forces that have shaped mammalian genomes. Here we analyze the gene families contained within the whole genomes of human, chimpanzee, mouse, rat, and dog. In total we find that more than half of the 9,990 families present in the mammalian common ancestor have either expanded or contracted along at least one lineage. Additionally, we find that a large number of families are completely lost from one or more mammalian genomes, and a similar number of gene families have arisen subsequent to the mammalian common ancestor. Along the lineage leading to modern humans we infer the gain of 689 genes and the loss of 86 genes since the split from chimpanzees, including changes likely driven by adaptive natural selection. Our results imply that humans and chimpanzees differ by at least 6% (1,418 of 22,000 genes) in their complement of genes, which stands in stark contrast to the oft-cited 1.5% difference between orthologous nucleotide sequences. This genomic “revolving door” of gene gain and loss represents a large number of genetic differences separating humans from our closest relatives

    (Re)Solving the dynamic atmospheres of carbon-rich giants.

    No full text
    International audienc

    (Re)Solving the dynamic atmospheres of carbon-rich giants.

    No full text
    International audienc

    Field drift correction of proton resonance frequency shift temperature mapping with multichannel fast alternating nonselective free induction decay readouts

    No full text
    Purpose: To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. Methods: Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. Results: In 30 minutes, B0 drift led to an apparent temperature change of up to –18°C and –98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and –0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was –1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at –4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. Conclusion: FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT

    Field drift correction of proton resonance frequency shift temperature mapping with multichannel fast alternating nonselective free induction decay readouts

    No full text
    Purpose: To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. Methods: Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. Results: In 30 minutes, B0 drift led to an apparent temperature change of up to –18°C and –98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and –0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was –1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at –4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. Conclusion: FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT
    corecore