34 research outputs found
Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes
Cork oak (Quercus suber L.) forests play an important ecological and economic role. Ectomycorrhizal fungi (ECMF) are key components for the sustainability and functioning of these ecosystems. The community structure and composition of ECMF associated with Q. suber in different landscapes of distinct Mediterranean bioclimate regions have not previously been compared. In this work, soil samples from cork oak forests residing in different bioclimates (arid, semi-arid, sub-humid, and humid) were collected and surveyed for ectomycorrhizal (ECM) root tips. A global analysis performed on 3565 ECM root tips revealed that the ECMF community is highly enriched in Russula, Tomentella, and Cenoccocum, which correspond to the ECMF genera that mainly contribute to community differences. The ECMF communities from the rainiest and the driest cork oak forests were distinct, with soils from the rainiest climates being more heterogeneous than those from the driest climates. The analyses of several abiotic factors on the ECMF communities revealed that bioclimate, precipitation, soil texture, and forest management strongly influenced ECMF structure. Shifts in ECMF with different hyphal exploration types were also detected among forests, with precipitation, forest system, and soil texture being the main drivers controlling their composition. Understanding the effects of environmental factors on the structuring of ECM communities could be the first step for promoting the sustainability of this threatened ecosystem.This work was supported by Fundacao Ciencia e Tecnologia (FCT/MCTES/PIDDAC, Portugal), under the project (PEst-OE/BIA/UI4046/2014; UID/MULTI/04046/2013) and PhD grant to F.R. (SFRH/BD/86519/2012)
Mycorrhization of fagaceae forests within mediterranean ecosystems
Mediterranean Fagaceae forests are valuable due to their ecological and socioeconomic aspects. Some profitable plant species, such as Castanea (timber and chestnut), Quercus (timber and cork), and Fagus (timber), encounter in this habitat the excellent edaphoclimatic conditions to develop. All Fagaceae plants are commonly associated to ECM fungal species, which are found in these forests in quite stable communities, mainly enriched in Russulaceae and Telephoraceae species. Currently, the Mediterranean Basin is considered as one of the global biodiversity hotspots, since many of their endemic plant species are not found elsewhere and are now under threat. Due to climate changing and introduction of disease agents, Fagaceae forests are facing an adaptation challenge to both biotic and abiotic threats. Although ECM communities are highly disturbed by climate factors and tree disease incidence, they could play an important role in increasing water availability to the plant and also improving plant tree defense against pathogens. Recent advances, namely, on genomics and transcriptomics, are providing tools for increasing the understanding of Fagaceae mycorrhization process and stress responses to biotic and abiotic stresses. Such studies can provide new information for the implementation of the most adequate management policies for protecting threaten Mediterranean forests.info:eu-repo/semantics/publishedVersio
Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia
The decomposition of dead plant biomass contributes to the carbon cycle and is one of the key processes in temperate forests. While fungi in litter decomposition drive the chemical changes occurring in litter, the bacterial community appears to be important as well, especially later in the decomposition process when its abundance increases. In this paper, we describe the bacterial community composition in live Quercus petraea leaves and during the subsequent two years of litter decomposition. Members of the classes Alpha-, Beta- and Gammaproteobacteria and the phyla Actinobacteria, Bacteroidetes and Acidobacteria were dominant throughout the experiment. Bacteria present in the oak phyllosphere were rapidly replaced by other taxa after leaf senescence. There were dynamic successive changes in community composition, in which the early-stage (months 2-4), mid-stage (months 6-8) and late-stage (months 10-24) decomposer communities could be distinguished, and the diversity increased with time. Bacteria associated with dead fungal mycelium were important during initial decomposition, with sequence relative abundances of up to 40% of the total bacterial community in months 2 and 4 when the highest fungal biomass was observed. Cellulose-decomposing bacteria were less frequent, with abundance ranging from 4% to 15%. The bacterial community dynamics reflects changes in the availability of possible resources either of the plant or microbial origin
MEAT PERFORMANCE OF THE CZECH SPOTTED CATTLE BULLS BRED IN MOUNTAIN REGION
Chosen indicators of meat performance of 98 bulls of Czech Spotted cattle bred in elevation above 720 m above sea-level in the mountain region of Šumava are presented in the article. The fattening was realized in a barn with a deep litter. The feed ration consisted of haylage throughout the year. The bulls were divided into three groups according to their genotype - C100, C75-85R (CxR) and C75-85A (CxA). The highest live weight at slaughter was achieved in the group C100 with 650
kg with the average age of 726 days and the weight of the carcasses of 363.8 kg. On the other hand, the worst results were achieved in the group CxA. For comparison a group of 14 bulls of the Holstein breed was created (H100), which was fattened in
the same conditions. The bulls achieved their highest live weight before slaughter (664.6 kg), but at the highest age (743 days). Statistically significant differences were proven in the meat performance after individual fathers – the best results were
documented with the offspring of the bull BO-837. After the separation of the set of bulls according to live weight at the end of fattening, the highest results were achieved by the group above 700 kg. The best class using the SEUROP method was
achieved by the group with slaughtering live weight between 650 kg and 700 kg
Top-down control of soil fungal community composition by a globally distributed keystone consumer
The relative contribution of top-down and bottom-up processes regulating primary decomposers can influence the strength of the link between the soil animal community and ecosystem functioning. Although soil bacterial communities are regulated by bottom-up and top-down processes, the latter are considered to be less important in structuring the diversity and functioning of fungal-dominated ecosystems. Despite the huge diversity of mycophagous (fungal-feeding) soil fauna, and their potential to reverse the outcomes of competitive fungal interactions, top-down grazing effects have never been found to translate to community-level changes. We constructed soil mesocosms to investigate the potential of isopods grazing on cord-forming basidiomycete fungi to influence the community composition and functioning of a complex woodland soil microbial community. Using metagenomic sequencing we provide conclusive evidence of direct top-down control at the community scale in fungal-dominated woodland soil. By suppressing the dominant cord-forming basidiomycete fungi, isopods prevented the competitive exclusion of surrounding litter fungi, increasing diversity in a community containing several hundred fungal species. This isopod-induced modification of community composition drove a shift in the soil enzyme profile, and led to a restructuring of the wider mycophagous invertebrate community. We highlight characteristics of different soil ecosystems that will give rise to such top-down control. Given the ubiquity of isopods and basidiomycete fungi in temperate and boreal woodland ecosystems, such top-down community control could be of widespread significance for global carbon and nutrient cycling
Several Genes Encoding Enzymes with the Same Activity Are Necessary for Aerobic Fungal Degradation of Cellulose in Nature
The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.<br/