766 research outputs found

    Study of the charge profile of thermally poled electrets

    Get PDF
    The charge profile of thermally poled electrets has been studied using two different methods, laser induced pressure pulse (LIPP) and pulsed electroacoustic (PEA), to gain insight into the mechanisms that are activated and assess which is the most appropriate method to study the charge profile. Disc--shaped PET samples have been conventionally poled to activate both the alpha and the rho relaxation and, right after, partially discharged up to a temperature Tpd. In this way, samples with a different combination of dipolar and space charge polarization have been obtained. Both LIPP and PEA reveal asymmetric profiles for Tpd below the glass transition temperature, that progressively become antisymmetric for higher temperatures. The shape and evolution of the charge profiles can be explained assuming injection of negative carriers from the anode that enhances the trapping of positive carriers near this electrode. It can be observed that PEA is able to detect a wider variety of polarization mechanisms in the system while LIPP gives a simpler picture of the charge profile.Comment: 19 pages, 11 figure

    Resource allocation to prey capture tissue in the aquatic carnivorous plant Utricularia vulgaris in northwestern Montana waters

    Get PDF

    Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain

    Full text link
    [EN] Electricity management and production depend heavily on demand forecasts made. Any mismatch between the energy demanded with respect to that produced supposes enormous losses for the consumer. Transmission System Operators use time series-based tools to forecast accurately the future demand and set the production program. One of the most effective and highly used methods are Holt-Winters. Recently, the incorporation of the multiple seasonal Holt-Winters methods has improved the accuracy of the predictions. These forecasts, depend greatly on the parameters with which the model is constructed. The forecasters need to deal with these parameters values when operating the model. In this article, the parameters space of the multiple seasonal Holt-Winters models applied to electricity demand in Spain is analysed and discussed. The parameters stability analysis leads to forecasters better understanding the behaviour of the predictions and managing their exploitation efficiently. The analysis addresses different time windows, depending on the period of the year as well as different training set sizes. The results show the influence of the calendar effect on these parameters and if it is necessary or not to update them in order to obtain a good accuracy over time.The authors would like to thank the Spanish Ministry of Economy and Competitiveness for the support under project TIN2017-8888209C2-1-R.Trull, Ă“.; GarcĂ­a-DĂ­az, JC.; Troncoso, A. (2020). Stability of Multiple Seasonal Holt-Winters Models Applied to Hourly Electricity Demand in Spain. Applied Sciences. 10(7):1-16. https://doi.org/10.3390/app10072630S11610

    Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models

    Full text link
    [EN] The Holt-Winters models are one of the most popular forecasting algorithms. As well-known, these models are recursive and thus, an initialization value is needed to feed the model, being that a proper initialization of the Holt-Winters models is crucial for obtaining a good accuracy of the predictions. Moreover, the introduction of multiple seasonal Holt-Winters models requires a new development of methods for seed initialization and obtaining initial values. This work proposes new initialization methods based on the adaptation of the traditional methods developed for a single seasonality in order to include multiple seasonalities. Thus, new methods to initialize the level, trend, and seasonality in multiple seasonal Holt-Winters models are presented. These new methods are tested with an application for electricity demand in Spain and analyzed for their impact on the accuracy of forecasts. As a consequence of the analysis carried out, which initialization method to use for the level, trend, and seasonality in multiple seasonal Holt-Winters models with an additive and multiplicative trend is provided.Trull, O.; García-Díaz, JC.; Troncoso, A. (2020). Initialization Methods for Multiple Seasonal Holt-Winters Forecasting Models. Mathematics. 8(2):1-17. https://doi.org/10.3390/math8020268S11782Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 30(4), 1030-1081. doi:10.1016/j.ijforecast.2014.08.008Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003Holt, C. C. (2004). Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting, 20(1), 5-10. doi:10.1016/j.ijforecast.2003.09.015Bowerman, B. L., Koehler, A., & Pack, D. J. (1990). Forecasting time series with increasing seasonal variation. Journal of Forecasting, 9(5), 419-436. doi:10.1002/for.3980090502Initializing the Holt–Winters Methodhttps://robjhyndman.com/hyndsight/hw-initialization/Rasmussen, R. (2004). On time series data and optimal parameters. Omega, 32(2), 111-120. doi:10.1016/j.omega.2003.09.013Trull, Ó., García-Díaz, J., & Troncoso, A. (2019). Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies, 12(6), 1083. doi:10.3390/en12061083Segura, J. V., & Vercher, E. (2001). A spreadsheet modeling approach to the Holt–Winters optimal forecasting. European Journal of Operational Research, 131(2), 375-388. doi:10.1016/s0377-2217(00)00062-xMakridakis, S., & Hibon, M. (1991). Exponential smoothing: The effect of initial values and loss functions on post-sample forecasting accuracy. International Journal of Forecasting, 7(3), 317-330. doi:10.1016/0169-2070(91)90005-gWilliams, D. W., & Miller, D. (1999). Level-adjusted exponential smoothing for modeling planned discontinuities. International Journal of Forecasting, 15(3), 273-289. doi:10.1016/s0169-2070(98)00083-

    Resonant, broadband and highly efficient optical frequency conversion in semiconductor nanowire gratings at visible and UV wavelengths

    Full text link
    Using a hydrodynamic approach we examine bulk- and surface-induced second and third harmonic generation from semiconductor nanowire gratings having a resonant nonlinearity in the absorption region. We demonstrate resonant, broadband and highly efficient optical frequency conversion: contrary to conventional wisdom, we show that harmonic generation can take full advantage of resonant nonlinearities in a spectral range where nonlinear optical coefficients are boosted well beyond what is achievable in the transparent, long-wavelength, non-resonant regime. Using femtosecond pulses with approximately 500 MW/cm2 peak power density, we predict third harmonic conversion efficiencies of approximately 1% in a silicon nanowire array, at nearly any desired UV or visible wavelength, including the range of negative dielectric constant. We also predict surface second harmonic conversion efficiencies of order 0.01%, depending on the electronic effective mass, bistable behavior of the signals as a result of a reshaped resonance, and the onset fifth order nonlinear effects. These remarkable findings, arising from the combined effects of nonlinear resonance dispersion, field localization, and phase-locking, could significantly extend the operational spectral bandwidth of silicon photonics, and strongly suggest that neither linear absorption nor skin depth should be motivating factors to exclude either semiconductors or metals from the list of useful or practical nonlinear materials in any spectral range.Comment: 12 pages, 4 figure

    Three dimensional imaging of short pulses

    Full text link
    We exploit a slightly noncollinear second-harmonic cross-correlation scheme to map the 3D space-time intensity distribution of an unknown complex-shaped ultrashort optical pulse. We show the capability of the technique to reconstruct both the amplitude and the phase of the field through the coherence of the nonlinear interaction down to a resolution of 10 ÎĽ\mum in space and 200 fs in time. This implies that the concept of second-harmonic holography can be employed down to the sub-ps time scale, and used to discuss the features of the technique in terms of the reconstructed fields.Comment: 16 pages, 6 figure
    • …
    corecore