2,202 research outputs found
Monovalent counterion distributions at highly charged water interfaces: Proton-transfer and Poisson-Boltzmann theory
Surface sensitive synchrotron-X-ray scattering studies reveal the
distributions of monovalent ions next to highly charged interfaces. A lipid
phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the
air-water interface, containing CsI at various concentrations. Using anomalous
reflectivity off and at the Cs resonance, we provide, for the first
time, spatial counterion distributions (Cs) next to the negatively charged
interface over a wide range of ionic concentrations. We argue that at low salt
concentrations and for pure water the enhanced concentration of hydroniums
HO at the interface leads to proton-transfer back to the phosphate
group by a high contact-potential, whereas high salt concentrations lower the
contact-potential resulting in proton-release and increased surface
charge-density. The experimental ionic distributions are in excellent agreement
with a renormalized-surface-charge Poisson-Boltzmann theory without fitting
parameters or additional assumptions
Monte Carlo simulations of the screening potential of the Yukawa one-component plasma
A Monte Carlo scheme to sample the screening potential H(r) of Yukawa plasmas
notably at short distances is presented. This scheme is based on an importance
sampling technique. Comparisons with former results for the Coulombic
one-component plasma are given. Our Monte Carlo simulations yield an accurate
estimate of H(r) as well for short range and long range interparticle
distances.Comment: to be published in Journal of Physics A: Mathematical and Genera
Free energies of crystalline solids: a lattice-switch Monte Carlo method
We present a method for the direct evaluation of the difference between the
free energies of two crystalline structures, of different symmetry. The method
rests on a Monte Carlo procedure which allows one to sample along a path,
through atomic-displacement-space, leading from one structure to the other by
way of an intervening transformation that switches one set of lattice vectors
for another. The configurations of both structures can thus be sampled within a
single Monte Carlo process, and the difference between their free energies
evaluated directly from the ratio of the measured probabilities of each. The
method is used to determine the difference between the free energies of the fcc
and hcp crystalline phases of a system of hard spheres.Comment: 5 pages Revtex, 3 figure
An investigation of eddy-current damping of multi-stage pendulum suspensions for use in interferometric gravitational wave detectors
In this article we discuss theoretical and experimental investigations of the use of eddy-current damping for multi-stage pendulum suspensions such as those intended for use in Advanced LIGO, the proposed upgrade to LIGO (the US laser interferometric gravitational-wave observatory). The design of these suspensions is based on the triple pendulum suspension design developed for GEO 600, the German/UK interferometric gravitational wave detector, currently being commissioned. In that detector all the low frequency resonant modes of the triple pendulums are damped by control systems using collocated sensing and feedback at the highest mass of each pendulum, so that significant attenuation of noise associated with this so-called local control is achieved at the test masses. To achieve the more stringent noise levels planned for Advanced LIGO, the GEO 600 local control design needs some modification. Here we address one particular approach, namely that of using eddy-current damping as a replacement or supplement to active damping for some or all of the modes of the pendulums. We show that eddy-current damping is indeed a practical alternative to the development of very low noise sensors for active damping of triple pendulums, and may also have application to the heavier quadruple pendulums at a reduced level of damping
Multicanonical Multigrid Monte Carlo
To further improve the performance of Monte Carlo simulations of first-order
phase transitions we propose to combine the multicanonical approach with
multigrid techniques. We report tests of this proposition for the
-dimensional field theory in two different situations. First, we
study quantum tunneling for in the continuum limit, and second, we
investigate first-order phase transitions for in the infinite volume
limit. Compared with standard multicanonical simulations we obtain improvement
factors of several resp. of about one order of magnitude.Comment: 12 pages LaTex, 1 PS figure appended. FU-Berlin preprint FUB-HEP 9/9
Polyelectrolyte Multilayering on a Charged Planar Surface
The adsorption of highly \textit{oppositely} charged flexible
polyelectrolytes (PEs) on a charged planar substrate is investigated by means
of Monte Carlo (MC) simulations. We study in detail the equilibrium structure
of the first few PE layers. The influence of the chain length and of a (extra)
non-electrostatic short range attraction between the polycations and the
negatively charged substrate is considered. We show that the stability as well
as the microstructure of the PE layers are especially sensitive to the strength
of this latter interaction. Qualitative agreement is reached with some recent
experiments.Comment: 28 pages; 11 (main) Figs - Revtex4 - Higher resolution Figs can be
obtained upon request. To appear in Macromolecule
Trypanosoma cruzi phosphomannomutase and guanosine diphosphate-mannose pyrophosphorylase ligandability assessment
Chagas’ disease, which is caused by the Trypanosoma cruzi parasite, has become a global health problem that is currently treated with poorly tolerated drugs that require prolonged dosing. Therefore, there is a clinical need for new therapeutic agents that can mitigate these issues. The phosphomannomutase (PMM) and GDP-mannose pyrophosphorylase (GDP-MP) enzymes form part of the de novo biosynthetic pathway to the nucleotide sugar GDP-mannose. This nucleotide sugar is used either directly, or indirectly via the formation of dolichol-phosphomannose, for the assembly of all mannose-containing glycoconjugates. In T. cruzi, mannose-containing glycoconjugates include the cell-surface glycoinositol-phospholipids and the glycosylphosphatidylinositol-anchored mucin-like glycoproteins that dominate the cell surface architectures of all life cycle stages. This makes PMM and GDP-MP potentially attractive targets for a drug discovery program against Chagas’ disease. To assess the ligandability of these enzymes in T. cruzi, we have screened 18,117 structurally diverse compounds exploring drug-like chemical space and 16,845 small polar fragment compounds using an assay interrogating the activities of both PMM and GDP-MP enzymes simultaneously. This resulted in 48 small fragment hits, and on retesting 20 were found to be active against the enzymes. Deconvolution revealed that these were all inhibitors of T. cruzi GDP-MP, with compounds 2 and 3 acting as uncompetitive and competitive inhibitors, respectively. Based on these findings, the T. cruzi PMM and GDP-MP enzymes were deemed not ligandable and poorly ligandable, respectively, using small molecules from conventional drug discovery chemical space. This presents a significant hurdle to exploiting these enzymes as therapeutic targets for Chagas’ disease.</p
Multicanonical Hybrid Monte Carlo: Boosting Simulations of Compact QED
We demonstrate that substantial progress can be achieved in the study of the
phase structure of 4-dimensional compact QED by a joint use of hybrid Monte
Carlo and multicanonical algorithms, through an efficient parallel
implementation. This is borne out by the observation of considerable speedup of
tunnelling between the metastable states, close to the phase transition, on the
Wilson line. We estimate that the creation of adequate samples (with order 100
flip-flops) becomes a matter of half a year's runtime at 2 Gflops sustained
performance for lattices of size up to 24^4.Comment: 15 pages, 8 figure
Constraint methods for determining pathways and free energy of activated processes
Activated processes from chemical reactions up to conformational transitions
of large biomolecules are hampered by barriers which are overcome only by the
input of some free energy of activation. Hence, the characteristic and
rate-determining barrier regions are not sufficiently sampled by usual
simulation techniques. Constraints on a reaction coordinate r have turned out
to be a suitable means to explore difficult pathways without changing potential
function, energy or temperature. For a dense sequence of values of r, the
corresponding sequence of simulations provides a pathway for the process. As
only one coordinate among thousands is fixed during each simulation, the
pathway essentially reflects the system's internal dynamics. From mean forces
the free energy profile can be calculated to obtain reaction rates and insight
in the reaction mechanism. In the last decade, theoretical tools and computing
capacity have been developed to a degree where simulations give impressive
qualitative insight in the processes at quantitative agreement with
experiments. Here, we give an introduction to reaction pathways and
coordinates, and develop the theory of free energy as the potential of mean
force. We clarify the connection between mean force and constraint force which
is the central quantity evaluated, and discuss the mass metric tensor
correction. Well-behaved coordinates without tensor correction are considered.
We discuss the theoretical background and practical implementation on the
example of the reaction coordinate of targeted molecular dynamics simulation.
Finally, we compare applications of constraint methods and other techniques
developed for the same purpose, and discuss the limits of the approach
A Method to Study Relaxation of Metastable Phases: Macroscopic Mean-Field Dynamics
We propose two different macroscopic dynamics to describe the decay of
metastable phases in many-particle systems with local interactions. These
dynamics depend on the macroscopic order parameter through the restricted
free energy and are designed to give the correct equilibrium
distribution for . The connection between macroscopic dynamics and the
underlying microscopic dynamic are considered in the context of a projection-
operator formalism. Application to the square-lattice nearest-neighbor Ising
ferromagnet gives good agreement with droplet theory and Monte Carlo
simulations of the underlying microscopic dynamic. This includes quantitative
agreement for the exponential dependence of the lifetime on the inverse of the
applied field , and the observation of distinct field regions in which the
derivative of the lifetime with respect to depends differently on . In
addition, at very low temperatures we observe oscillatory behavior of this
derivative with respect to , due to the discreteness of the lattice and in
agreement with rigorous results. Similarities and differences between this work
and earlier works on finite Ising models in the fixed-magnetization ensemble
are discussed.Comment: 44 pages RevTeX3, 11 uuencoded Postscript figs. in separate file
- …
