2,095 research outputs found

    High Rayleigh number convection with double diffusive fingers

    Full text link
    An electrodeposition cell is used to sustain a destabilizing concentration difference of copper ions in aqueous solution between the top and bottom boundaries of the cell. The resulting convecting motion is analogous to Rayleigh-B\'enard convection at high Prandtl numbers. In addition, a stabilizing temperature gradient is imposed across the cell. Even for thermal buoyancy two orders of magnitude smaller than chemical buoyancy, the presence of the weak stabilizing gradient has a profound effect on the convection pattern. Double diffusive fingers appear in all cases. The size of these fingers and the flow velocities are independent of the height of the cell, but they depend on the ion concentration difference between top and bottom boundaries as well as on the imposed temperature gradient. The scaling of the mass transport is compatible with previous results on double diffusive convection

    Interactions In Space For Archaeological Models

    Full text link
    In this article we examine a variety of quantitative models for describing archaeological networks, with particular emphasis on the maritime networks of the Aegean Middle Bronze Age. In particular, we discriminate between those gravitational networks that are most likely (maximum entropy) and most efficient (best cost/benefit outcomes).Comment: 21 pages, 6 figures, 2 tables. Contribution to special issue of Advances in Complex Systems from the conference `Cultural Evolution in Spatially Structured Populations', UCL, London, September 2010. To appear in Advances in Complex System

    Photon number discrimination without a photon counter and its application to reconstructing non-Gaussian states

    Get PDF
    The non-linearity of a conditional photon-counting measurement can be used to `de-Gaussify' a Gaussian state of light. Here we present and experimentally demonstrate a technique for photon number resolution using only homodyne detection. We then apply this technique to inform a conditional measurement; unambiguously reconstructing the statistics of the non-Gaussian one and two photon subtracted squeezed vacuum states. Although our photon number measurement relies on ensemble averages and cannot be used to prepare non-Gaussian states of light, its high efficiency, photon number resolving capabilities, and compatibility with the telecommunications band make it suitable for quantum information tasks relying on the outcomes of mean values.Comment: 4 pages, 3 figures. Theory section expanded in response to referee comment

    Wigner's DD-matrix elements for SU(3)SU(3) - A Generating Function Approach

    Get PDF
    A generating function for the Wigner's DD-matrix elements of SU(3)SU(3) is derived. From this an explicit expression for the individual matrix elements is obtained in a closed form.Comment: RevTex 3.0, 22 pages, no figure

    Experimental test of nonclassicality criteria

    Full text link
    We experimentally examine the nonclassical character of a class of non-Gaussian states known as phase-diffused squeezed states. These states may show no squeezing effect at all, and therefore provide an interesting example to test nonclassicality criteria. The characteristic function of the Glauber-Sudarshan representation (P function) proves to be a powerful tool to detect nonclassicality. Using this criterion we find that phase-diffused squeezed states are always nonclassical, even if the squeezing effect vanishes. Testing other criteria of nonclassicality based on higher-order squeezing and the positive semidefinitness of special matrices of normally ordered moments, it is found that these criteria fail to reveal the nonclassicality for some of the prepared phase-diffused squeezed states.Comment: 6 pages, 2 figure

    Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar/stellar connection from Kepler and Hermes

    Full text link
    We identify a set of 18 solar analogs among the seismic sample of solar-like stars observed by the Kepler satellite rotating between 10 and 40 days. This set is constructed using the asteroseismic stellar properties derived using either the global oscillation properties or the individual acoustic frequencies. We measure the magnetic activity properties of these stars using observations collected by the photometric Kepler satellite and by the ground-based, high-resolution Hermes spectrograph mounted on the Mercator telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity levels of these seismic solar analogs are estimated and compared in relation to the solar activity. We show that the activity of the Sun is comparable to the activity of the seismic solar analogs, within the maximum-to-minimum temporal variations of the 11-year solar activity cycle 23. In agreement with previous studies, the youngest stars and fastest rotators in our sample are actually the most active. The activity of stars older than the Sun seems to not evolve much with age. Furthermore, the comparison of the photospheric, Sph, with the well-established chromospheric, S index, indicates that the Sph index can be used to provide a suitable magnetic activity proxy which can be easily estimated for a large number of stars from space photometric observations.Comment: Accepted for publication in A&

    Low-dimensional quite noisy bound entanglement with cryptographic key

    Full text link
    We provide a class of bound entangled states that have positive distillable secure key rate. The smallest state of this kind is 4 \bigotimes 4. Our class is a generalization of the class presented in [1] (IEEE Trans. Inf. Theory 54, 2621 (2008); arXiv:quant-ph/0506203). It is much wider, containing, in particular, states from the boundary of PPT entangled states (all of the states in the class in [1] were of this kind) but also states inside the set of PPT entangled states, even, approaching the separable states. This generalization comes with a price: for the wider class a positive key rate requires, in general, apart from the one-way Devetak-Winter protocol (used in [1]) also the recurrence preprocessing and thus effectively is a two-way protocol. We also analyze the amount of noise that can be admixtured to the states of our class without losing key distillability property which may be crucial for experimental realization. The wider class contains key-distillable states with higher entropy (up to 3.524, as opposed to 2.564 for the class in [1]).Comment: 10 pages, final version for J. Phys. A: Math. Theo

    Optimization of an implantable magnetic marker for surgical localization of breast cancer

    Get PDF
    For small, early-stage or otherwise non-palpable breast tumors, surgeons rely on localization technologies to accurately find and remove the tumor tissue during breast conserving surgery. However, current widely accepted localization technologies either use painful and logistically challenging guidewires, or complex radioactive iodine sources. We have developed an implantable magnetic marker, intended to mark the location of a breast tumor, that can be detected during surgery using a clinical handheld magnetic susceptometry system. Here, we report on the development and optimization of this magnetic marker, focusing on the material, shape and various material assemblies. It was found that the effects of magnetic shape anisotropy may decrease localization precision. This can be circumvented by combining multiple isotropic magnetic elements separated from one another. A final optimized prototype was constructed and compared to a commercially available magnetic marker. Finally, the technology was tested in an ex vivo surgical setting on tissue to assess radiological visibility and surgical feasibility. The marker was successfully detected and removed in all ex vivo sessions, and the technology was found feasible.</p

    Demonstrating various quantum effects with two entangled laser beams

    Full text link
    We report on the preparation of entangled two mode squeezed states of yet unseen quality. Based on a measurement of the covariance matrix we found a violation of the Reid and Drummond EPR-criterion at a value of only 0.36\pm0.03 compared to the threshold of 1. Furthermore, quantum state tomography was used to extract a single photon Fock state solely based on homodyne detection, demonstrating the strong quantum features of this pair of laser-beams. The probability for a single photon in this ensemble measurement exceeded 2/3
    corecore