747 research outputs found

    Bandit Online Optimization Over the Permutahedron

    Full text link
    The permutahedron is the convex polytope with vertex set consisting of the vectors (π(1),,π(n))(\pi(1),\dots, \pi(n)) for all permutations (bijections) π\pi over {1,,n}\{1,\dots, n\}. We study a bandit game in which, at each step tt, an adversary chooses a hidden weight weight vector sts_t, a player chooses a vertex πt\pi_t of the permutahedron and suffers an observed loss of i=1nπ(i)st(i)\sum_{i=1}^n \pi(i) s_t(i). A previous algorithm CombBand of Cesa-Bianchi et al (2009) guarantees a regret of O(nTlogn)O(n\sqrt{T \log n}) for a time horizon of TT. Unfortunately, CombBand requires at each step an nn-by-nn matrix permanent approximation to within improved accuracy as TT grows, resulting in a total running time that is super linear in TT, making it impractical for large time horizons. We provide an algorithm of regret O(n3/2T)O(n^{3/2}\sqrt{T}) with total time complexity O(n3T)O(n^3T). The ideas are a combination of CombBand and a recent algorithm by Ailon (2013) for online optimization over the permutahedron in the full information setting. The technical core is a bound on the variance of the Plackett-Luce noisy sorting process's "pseudo loss". The bound is obtained by establishing positive semi-definiteness of a family of 3-by-3 matrices generated from rational functions of exponentials of 3 parameters

    Sunplanter

    Get PDF
    Although the cost of solar technology has been reduced by nearly seventy percent in the last ten years, the cost of implementing solar panels for residential and commercial use has remained stagnant. Due to the lack of affordable, easily installable solar panel systems on residential properties, the goal of our Senior Design Project is to design a stand-alone solar tracking structure. Since the system is stand-alone, it can be easily implemented on a wide range of properties in most areas of California. Our design for the support of the solar tracking system is a two-pole structure, with a wide base under each pole to eliminate the need for a deep foundation. An electric gearmotor system will drive the rotational motion of the solar tracking function, due to its high power output and relatively affordable cost. A hydraulic damping and blocking system was incorporated to precisely control rotational motion. After testing the system for both tracking and static operation, an 11.4% increase power production was observed. Sunplanter solar tracking systems have the potential to provide a financially viable investment opportunity for customers while having a positive impact on the environment
    corecore