27 research outputs found

    FoxO1, A2M, and TGF-beta 1 : three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses

    Get PDF
    To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-beta 1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-beta 1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets.Peer reviewe

    CNF1 Improves Astrocytic Ability to Support Neuronal Growth and Differentiation In vitro

    Get PDF
    Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated by astrocytes

    Radial glia-Endothelial cells bidirectional interactions control vascular maturation and astrocyte differentiation: impact for blood brain barrier

    No full text
    Excell file containing spreadsheets of quantifications of cell population numbers, gene expression levels and protein immunostaining intensity, regarding munuscript accepted for publication in Current Neurovascular Research (2019). "Radial glia-Endothelial cells bidirectional interactions control vascular maturation and astrocyte differentiation: impact for blood brain barrier

    Radial glia-Endothelial cells bidirectional interactions control vascular maturation and astrocyte differentiation: impact for blood brain barrier

    No full text
    Excell file containing spreadsheets of quantifications of cell population numbers, gene expression levels and protein immunostaining intensity, regarding munuscript accepted for publication in Current Neurovascular Research (2019). "Radial glia-Endothelial cells bidirectional interactions control vascular maturation and astrocyte differentiation: impact for blood brain barrier

    Supplementary Material for: Activation of MAPK/PI3K/SMAD Pathways by TGF-β<sub>1</sub> Controls Differentiation of Radial Glia into Astrocytes in vitro

    No full text
    The major neural stem cell population in the developing cerebral cortex is the radial glia cells, which generate neurons and glial cells. The mechanisms that modulate the maintenance of the radial glia stem cell phenotype, or its differentiation, are not completely elucidated. We previously demonstrated that transforming growth factor-β<sub>1</sub> (TGF-β<sub>1</sub>) promotes radial glia differentiation into astrocytes in vitro [Glia 2007;55:1023–1033]. Here we investigated the intracellular signaling pathways involved in the TGF-β<sub>1</sub>-induced radial glia fate commitment. We demonstrate that the mechanisms underlying the TGF-β<sub>1</sub> effect on radial glia cell differentiation or progenitor potential maintenance diverge. Whereas radial glia differentiation into astrocytes is mediated by the activation of the MAPK signaling pathway, neurogenesis is modulated by different levels of PI3K and SMAD2/3 activity. Our work demonstrates that radial glia cells are a heterogeneous population and a potential target of TGF-β<sub>1</sub>, and suggests that its effect on radial glia fate commitment is mediated by the recruitment of a complex multipathway mechanism that controls astrocyte and neuronal generation in the developing cerebral cortex
    corecore