181 research outputs found

    Lower bounds for nodal sets of eigenfunctions

    Get PDF
    We prove lower bounds for the Hausdorff measure of nodal sets of eigenfunctions.Comment: To appear in Communications in Mathematical Physics; revised to include two additional references and update bibliographic informatio

    Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds

    Get PDF
    The sharp Wolff-type decoupling estimates of Bourgain--Demeter are extended to the variable coefficient setting. These results are applied to obtain new sharp local smoothing estimates for wave equations on compact Riemannian manifolds, away from the endpoint regularity exponent. More generally, local smoothing estimates are established for a natural class of Fourier integral operators; at this level of generality the results are sharp in odd dimensions, both in terms of the regularity exponent and the Lebesgue exponent

    Sharp local smoothing estimates for Fourier integral operators

    Get PDF
    The theory of Fourier integral operators is surveyed, with an emphasis on local smoothing estimates and their applications. After reviewing the classical background, we describe some recent work of the authors which established sharp local smoothing estimates for a natural class of Fourier integral operators. We also show how local smoothing estimates imply oscillatory integral estimates and obtain a maximal variant of an oscillatory integral estimate of Stein. Together with an oscillatory integral counterexample of Bourgain, this shows that our local smoothing estimates are sharp in odd spatial dimensions. Motivated by related counterexamples, we formulate local smoothing conjectures which take into account natural geometric assumptions arising from the structure of the Fourier integrals

    Generalized and weighted Strichartz estimates

    Full text link
    In this paper, we explore the relations between different kinds of Strichartz estimates and give new estimates in Euclidean space Rn\mathbb{R}^n. In particular, we prove the generalized and weighted Strichartz estimates for a large class of dispersive operators including the Schr\"odinger and wave equation. As a sample application of these new estimates, we are able to prove the Strauss conjecture with low regularity for dimension 2 and 3.Comment: Final version, to appear in the Communications on Pure and Applied Analysis. 33 pages. 2 more references adde

    Carleman estimates and absence of embedded eigenvalues

    Full text link
    Let L be a Schroedinger operator with potential W in L^{(n+1)/2}. We prove that there is no embedded eigenvalue. The main tool is an Lp Carleman type estimate, which builds on delicate dispersive estimates established in a previous paper. The arguments extend to variable coefficient operators with long range potentials and with gradient potentials.Comment: 26 page

    Global existence problem in T3T^3-Gowdy symmetric IIB superstring cosmology

    Full text link
    We show global existence theorems for Gowdy symmetric spacetimes with type IIB stringy matter. The areal and constant mean curvature time coordinates are used. Before coming to that, it is shown that a wave map describes the evolution of this system

    Lower bounds for nodal sets of Dirichlet and Neumann eigenfunctions

    Full text link
    Let \phi\ be a Dirichlet or Neumann eigenfunction of the Laplace-Beltrami operator on a compact Riemannian manifold with boundary. We prove lower bounds for the size of the nodal set {\phi=0}.Comment: 7 page

    Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    Full text link
    We investigate the scale-locality of subgrid-scale (SGS) energy flux and inter-band energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial-range. Inter-band energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of ``local transfer by nonlocal triads,'' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all {\it individual} wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial-range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, non-local triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's ALHDIA and TFM closures. We support our results with numerical data from a 5123512^3 pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We conclude that the sharp spectral filter has a firm theoretical basis for use in large-eddy simulation (LES) modeling of turbulent flows.Comment: 42 pages, 9 figure

    Bounds on the growth of high Sobolev norms of solutions to 2D Hartree Equations

    Full text link
    In this paper, we consider Hartree-type equations on the two-dimensional torus and on the plane. We prove polynomial bounds on the growth of high Sobolev norms of solutions to these equations. The proofs of our results are based on the adaptation to two dimensions of the techniques we previously used to study analogous problems on S1S^1, and on R\mathbb{R}.Comment: 38 page

    Concerning the Wave equation on Asymptotically Euclidean Manifolds

    Full text link
    We obtain KSS, Strichartz and certain weighted Strichartz estimate for the wave equation on (Rd,g)(\R^d, \mathfrak{g}), d3d \geq 3, when metric g\mathfrak{g} is non-trapping and approaches the Euclidean metric like xρ x ^{- \rho} with ρ>0\rho>0. Using the KSS estimate, we prove almost global existence for quadratically semilinear wave equations with small initial data for ρ>1\rho> 1 and d=3d=3. Also, we establish the Strauss conjecture when the metric is radial with ρ>0\rho>0 for d=3d= 3.Comment: Final version. To appear in Journal d'Analyse Mathematiqu
    corecore