620 research outputs found
Synthesis, Structure, and Ferromagnetism of a New Oxygen Defect Pyrochlore System Lu2V2O_{7-x} (x = 0.40-0.65)
A new fcc oxygen defect pyrochlore structure system Lu2V2O_{7-x} with x =
0.40 to 0.65 was synthesized from the known fcc ferromagnetic semiconductor
pyrochlore compound Lu2V2O7 which can be written as Lu2V2O6O' with two
inequivalent oxygen sites O and O'. Rietveld x-ray diffraction refinements
showed significant Lu-V antisite disorder for x >= 0.5. The lattice parameter
versus x (including x = 0) shows a distinct maximum at x ~ 0.4. We propose that
these observations can be explained if the oxygen defects are on the O'
sublattice of the structure. The magnetic susceptibility versus temperature
exhibits Curie-Weiss behavior above 150 K for all x, with a Curie constant C
that increases with x as expected in an ionic model. However, the magnetization
measurements also show that the (ferromagnetic) Weiss temperature theta and the
ferromagnetic ordering temperature T_C both strongly decrease with increasing x
instead of increasing as expected from C(x). The T_C decreases from 73 K for x
= 0 to 21 K for x = 0.65. Furthermore, the saturation moment at a field of 5.5
T at 5 K is nearly independent of x, with the value expected for a fixed spin
1/2 per V. The latter three observations suggest that Lu2V2O_{7-x} may contain
localized spin 1/2 vanadium moments in a metallic background that is induced by
oxygen defect doping, instead of being a semiconductor as suggested by the C(x)
dependence.Comment: 9 pages including 7 figures, 3 table
Temperature-dependent spin gap and singlet ground state in BaCuSi2O6
Bulk magnetic measurements and inelastic neutron scattering were used to
investigate the spin-singlet ground state and magnetic gap excitations in
BaCuSi2O6, a quasi-2-dimensional antiferromagnet with a bilayer structure. The
results are well described by a model based on weakly interacting
antiferromagnetic dimers. A strongly temperature-dependent dispersion in the
gap modes was found. We suggest that the observed excitations are analogous to
magneto-excitons in light rare-earth compounds, but are an intrinsic property
of a simple Heisenberg Hamiltonian for the S=1/2 magnetic bilayer.Comment: 10 pages, 4 figures, REVTeX and PS for text, PS for figures direct
download: http://papillon.phy.bnl.gov/preprints/bacusio.htm
Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease
Hole depletion and localization due to disorder in insulating PrBa2Cu3O7-d: a Compton scattering study
The (mostly) insulating behaviour of PrBa2Cu3O7-d is still unexplained and
even more interesting since the occasional appearance of superconductivity in
this material. Since YBa2Cu3O7-d is nominally iso-structural and always
superconducting, we have measured the electron momentum density in these
materials. We find that they differ in a striking way, the wavefunction
coherence length in PrBa2Cu3O7-d being strongly suppressed. We conclude that Pr
on Ba-site substitution disorder is responsible for the metal-insulator
transition. Preliminary efforts at growth with a method to prevent disorder
yield 90K superconducting PrBa2Cu3O7-d crystallites.Comment: 4 pages, 3 figures, revised version submitted to PR
Influenza virus NS1 protein binds cellular DNA to block transcription of antiviral genes
Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe
An Improved Instability–Shear Hail Proxy for Australia
We evaluated the performance in Australia of proxies designed to identify atmospheric conditions prone to hail and severe storms. In a convection-resolving but short-duration simulation, proxies that use instability and wind shear thresholds overestimated the probability of hail occurring when compared to the estimated occurrence of surface graupel in the model, particularly in Australia’s tropical north. We used reanalysis data and the Australian Bureau of Meteorology severe storm archive to examine atmospheric conditions at times and locations when hailstorms, other storms, and no storms were reported between January 1979 and March 2021. In instability–shear space, the best discriminator between hail and no-storm times was found to vary predictably with melting-level height, allowing a new proxy to better represent latitudinal trends in atmospheric conditions. We found extra conditions that can be applied to the new proxy to efficiently reduce the number of false alarms. The new proxy outperforms the tested existing proxies for detection of hail-prone conditions in Australia
Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA
The formation of heterochromatin at the centromeres in fission yeast depends on transcription of the outer repeats. These transcripts are processed into siRNAs that target homologous loci for heterochromatin formation. Here, high throughput sequencing of small RNA provides a comprehensive analysis of centromere-derived small RNAs. We found that the centromeric small RNAs are Dcr1 dependent, carry 5′-monophosphates and are associated with Ago1. The majority of centromeric small RNAs originate from two remarkably well-conserved sequences that are present in all centromeres. The high degree of similarity suggests that this non-coding sequence in itself may be of importance. Consistent with this, secondary structure-probing experiments indicate that this centromeric RNA is partially double-stranded and is processed by Dicer in vitro. We further demonstrate the existence of small centromeric RNA in rdp1Δ cells. Our data suggest a pathway for siRNA generation that is distinct from the well-documented model involving RITS/RDRC. We propose that primary transcripts fold into hairpin-like structures that may be processed by Dcr1 into siRNAs, and that these siRNAs may initiate heterochromatin formation independent of RDRC activity
Solvent Effects on Extractant Conformational Energetics in Liquid-Liquid Extraction: A Simulation Study of Molecular Solvents and Ionic Liquids
Extractant design in liquid-liquid extraction (LLE) is a research frontier of
metal ion separations that typically focuses on the direct extractant-metal
interactions. However, a more detailed understanding of energetic drivers of
separations beyond primary metal coordination is often lacking, including the
role of solvent in the extractant phase. In this work, we propose a new
mechanism for enhancing metal-complexant energetics with nanostructured
solvents. Using molecular dynamics simulations with umbrella sampling, we find
that the organic solvent can reshape the energetics of the extractant's
intramolecular conformational landscape. We calculate free energy profiles of
different conformations of a representative bidentate extractant,
n-octyl(phenyl)-N,N-diisobutyl carbamoyl methyl phosphinoxide (CMPO), in four
different solvents: dodecane, tributyl phosphate (TBP), and dry and wet ionic
liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
([EMIM][Tf_2N]). By promoting reorganization of the extractant molecule into
its binding conformation, our findings reveal how particular solvents can
ameliorate this unfavorable step of the metal separation process. In
particular, the charge alternating nanodomains formed in ILs substantially
reduce the free energy penalty associated with extractant reorganization.
Importantly, using alchemical free energy calculations, we find that this
stabilization persists even when we explicitly include the extracted cation.
These findings provide insight into the energic drivers of metal ion
separations and potentially suggest a new approach to designing effective
separations using a molecular-level understanding of solvent effects
Recommended from our members
Synthesis and properties of lanthanide-exchanged Preyssler`s heteropolyanions
Na{sup +} in the Preyssler heteropolytungstate anion [NaP{sub 5}W{sub 30}O{sub 110}]{sup 14{minus}} can be exchanged for a trivalent lanthanide ion. The potential significance of this new class of lanthanide heteropolyanions relates to their applications in catalysis science. This view follows from the fact that Keggin heteropolyanions and their free acids are used as heterogeneous solid catalysts and homogeneous solution catalysts. The authors describe synthetic conditions that lead to the incorporation of Ce{sup 3+} and Pr{sup 3+} within the Preyssler anion, and the coprecipitation of Ce{sup 3+} and the Preyssler anion. Initial studies indicate that the latter, coprecipitated, material deserves study for bifunctional catalytic activity
- …
