258 research outputs found

    Charged current universality problem and NuTeV anomaly: is SUSY to blame?

    Get PDF
    We compute the complete one-loop contributions to low-energy charged current weak interaction observables in the Minimal Supersymmetric Standard Model (MSSM). We obtain the constraints on the MSSM parameter space which arise when precision low-energy charged current (CC) data are analyzed in tandem with measurements of the muon anomaly. The data imply a pattern of mass splittings among first and second generation sleptons and squarks which contradicts predictions of widely used models for supersymmetry breaking mediation. We also discuss the implications of these constraints on the SUSY one-loop contributions to the (anti)neutrino-nucleus deep inelastic scattering. We consider the ratios of neutral current to charged current cross sections, and compare with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement. We discuss one scenario in which a right-sign effect arises, and show that it is ruled out by the CC data. We also study R parity-violating contributions. Although such effects can account for the violation of the first row CKM unitarity, they can not reproduce the NuTeV anomaly. If NuTeV anomaly is ultimately explained within the SM, R parity-violating resolution of the CKM unitarity problem can be tested in parity-violating electron scattering experiments at SLAC and TJNAF

    Impact of LSP Character on Slepton Reach at the LHC

    Get PDF
    Searches for supersymmetry at the Large Hadron Collider (LHC) have significantly constrained the parameter space associated with colored superpartners, whereas the constraints on color-singlet superpartners are considerably less severe. In this study, we investigate the dependence of slepton decay branching fractions on the nature of the lightest supersymmetric particle (LSP). In particular, in the Higgsino-like LSP scenarios, both decay branching fractions of ~L\tilde\ell_L and ν~\tilde\nu_\ell depend strongly on the sign and value of M1/M2M_1/M_2, which has strong implications for the reach of dilepton plus MET searches for slepton pair production. We extend the experimental results for same flavor, opposite sign dilepton plus MET searches at the 8 TeV LHC to various LSP scenarios. We find that the LHC bounds on sleptons are strongly enhanced for a non-Bino-like LSP: the 95% C.L. limit for m~Lm_{\tilde\ell_L} extends from 300 GeV for a Bino-like LSP to about 370 GeV for a Wino-like LSP. The bound for ~L\tilde\ell_L with a Higgsino-like LSP is the strongest (~ 490 GeV) for M1/M2M_1/M_2 ~ tan2θW-\tan^2\theta_W and is the weakest (~ 220 GeV) for M1/M2M_1/M_2 ~ tan2θW\tan^2\theta_W. We also calculate prospective slepton search reaches at the 14 TeV LHC. With 100 fb1^{-1} integrated luminosity, the projected 95% C.L. mass reach for the left-handed slepton varies from 550 (670) GeV for a Bino-like (Wino-like) LSP to 900 (390) GeV for a Higgsino-like LSP under the most optimistic (pessimistic) scenario. The reach for the right-handed slepton is about 440 GeV. The corresponding 5σ\sigma discovery sensitivity is about 100 GeV smaller. For 300 fb1^{-1} integrated luminosity, the reach is about 50 - 100 GeV higher.Comment: 24 pages, 10 figure

    Pion Leptonic Decays and Supersymmetry

    Get PDF
    We compute supersymmetric contributions to pion leptonic (\pi_{l2}) decays in the Minimal Supersymmetric Standard Model (MSSM). When R-parity is conserved, the largest contributions to the ratio R_{e/\mu} = \Gamma[ \pi^+ \to e^+ \nu_e(\gamma)]/\Gamma[ \pi^+ \to \mu^+ \nu_\mu(\gamma)] arise from one-loop (V-A)x(V-A) corrections. These contributions can be potentially as large as the sensitivities of upcoming experiments; if measured, they would imply significant bounds on the chargino and slepton sectors complementary to current collider limits. We also analyze R-parity violating interactions, which may produce a detectable deviation in R_{e/\mu} while remaining consistent with all other precision observables.Comment: 12 pages, 11 figures; included additional electroweak constraints in analysis, simplified abstract, ref. adde

    The LHC Discovery Potential of a Leptophilic Higgs

    Full text link
    In this work, we examine a two-Higgs-doublet extension of the Standard Model in which one Higgs doublet is responsible for giving mass to both up- and down-type quarks, while a separate doublet is responsible for giving mass to leptons. We examine both the theoretical and experimental constraints on the model and show that large regions of parameter space are allowed by these constraints in which the effective couplings between the lightest neutral Higgs scalar and the Standard-Model leptons are substantially enhanced. We investigate the collider phenomenology of such a "leptophilic" two-Higgs-doublet model and show that in cases where the low-energy spectrum contains only one light, CP-even scalar, a variety of collider processes essentially irrelevant for the discovery of a Standard Model Higgs boson (specifically those in which the Higgs boson decays directly into a charged-lepton pair) can contribute significantly to the discovery potential of a light-to-intermediate-mass (m_h < 140 GeV) Higgs boson at the LHC.Comment: 25 pages, LaVTeX, 11 figures, 1 tabl

    Fully self-consistent calculations of nuclear Schiff moments

    Get PDF
    We calculate the Schiff moments of the nuclei 199Hg and 211Ra in completely self-consistent odd-nucleus mean-field theory by modifying the Hartree-Fock-Bogoliubov code HFODD. We allow for arbitrary shape deformation, and include the effects of nucleon dipole moments alongside those of a CP-violating pion-exchange nucleon-nucleon interaction. The results for 199Hg differ significantly from those of previous calculations when the CP-violating interaction is of isovector character.Comment: 7 pages, 2 figure

    Relationship between the Montreal Cognitive Assessment and Mini-mental State Examination for assessment of mild cognitive impairment in older adults

    Get PDF
    BACKGROUND: The Montreal Cognitive Assessment (MoCA) was developed to enable earlier detection of mild cognitive impairment (MCI) relative to familiar multi-domain tests like the Mini-Mental State Exam (MMSE). Clinicians need to better understand the relationship between MoCA and MMSE scores. METHODS: For this cross-sectional study, we analyzed 219 healthy control (HC), 299 MCI, and 100 Alzheimer's disease (AD) dementia cases from the Alzheimer's Disease Neuroimaging Initiative (ADNI)-GO/2 database to evaluate MMSE and MoCA score distributions and select MoCA values to capture early and late MCI cases. Stepwise variable selection in logistic regression evaluated relative value of four test domains for separating MCI from HC. Functional Activities Questionnaire (FAQ) was evaluated as a strategy to separate dementia from MCI. Equi-percentile equating produced a translation grid for MoCA against MMSE scores. Receiver Operating Characteristic (ROC) analyses evaluated lower cutoff scores for capturing the most MCI cases. RESULTS: Most dementia cases scored abnormally, while MCI and HC score distributions overlapped on each test. Most MCI cases scored ≥ 17 on MoCA (96.3%) and ≥ 24 on MMSE (98.3%). The ceiling effect (28-30 points) for MCI and HC was less using MoCA (18.1%) versus MMSE (71.4%). MoCA and MMSE scores correlated most for dementia (r = 0.86; versus MCI r = 0.60; HC r = 0.43). Equi-percentile equating showed a MoCA score of 18 was equivalent to MMSE of 24. ROC analysis found MoCA ≥ 17 as the cutoff between MCI and dementia that emphasized high sensitivity (92.3%) to capture MCI cases. The core and orientation domains in both tests best distinguished HC from MCI groups, whereas comprehension/executive function and attention/calculation were not helpful. Mean FAQ scores were significantly higher and a greater proportion had abnormal FAQ scores in dementia than MCI and HC. CONCLUSIONS: MoCA and MMSE were more similar for dementia cases, but MoCA distributes MCI cases across a broader score range with less ceiling effect. A cutoff of ≥ 17 on the MoCA may help capture early and late MCI cases; depending on the level of sensitivity desired, ≥ 18 or 19 could be used. Functional assessment can help exclude dementia cases. MoCA scores are translatable to the MMSE to facilitate comparison

    Activation of p107 by Fibroblast Growth Factor, Which Is Essential for Chondrocyte Cell Cycle Exit, Is Mediated by the Protein Phosphatase 2A/B55α Holoenzyme

    Get PDF
    The phosphorylation state of pocket proteins during the cell cycle is determined at least in part by an equilibrium between inducible cyclin-dependent kinases (CDKs) and serine/threonine protein phosphatase 2A (PP2A). Two trimeric holoenzymes consisting of the core PP2A catalytic/scaffold dimer and either the B55α or PR70 regulatory subunit have been implicated in the activation of p107/p130 and pRB, respectively. While the phosphorylation state of p107 is very sensitive to forced changes of B55α levels in human cell lines, regulation of p107 in response to physiological modulation of PP2A/B55α has not been elucidated. Here we show that fibroblast growth factor 1 (FGF1), which induces maturation and cell cycle exit in chondrocytes, triggers rapid accumulation of p107-PP2A/B55α complexes coinciding with p107 dephosphorylation. Reciprocal solution-based mass spectrometric analysis identified the PP2A/B55α complex as a major component in p107 complexes, which also contain E2F/DPs, DREAM subunits, and/or cyclin/CDK complexes. Of note, p107 is one of the preferred partners of B55α, which also associates with pRB in RCS cells. FGF1-induced dephosphorylation of p107 results in its rapid accumulation in the nucleus and formation of larger complexes containing p107 and enhances its interaction with E2F4 and other p107 partners. Consistent with a key role of B55α in the rapid activation of p107 in chondrocytes, limited ectopic expression of B55α results in marked dephosphorylation of p107 while B55α knockdown results in hyperphosphorylation. More importantly, knockdown of B55α dramatically delays FGF1-induced dephosphorylation of p107 and slows down cell cycle exit. Moreover, dephosphorylation of p107 in response to FGF1 treatment results in early recruitment of p107 to the MYC promoter, an FGF1/E2F-regulated gene. Our results suggest a model in which FGF1 mediates rapid dephosphorylation and activation of p107 independently of the CDK activities that maintain p130 and pRB hyperphosphorylation for several hours after p107 dephosphorylation in maturing chondrocytes

    Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness

    Get PDF
    Photoluminescence (PL) is investigated as a function of the excitation intensity and temperature for lattice-matched InGaAs/InAlAs quantum well (QW) structures with well thicknesses of 7 and 15 nm, respectively. At low temperature, interface fluctuations result in the 7-nm QW PL exhibiting a blueshift of 15 meV, a narrowing of the linewidth (full width at half maximum, FWHM) from 20.3 to 10 meV, and a clear transition of the spectral profile with the laser excitation intensity increasing four orders in magnitude. The 7-nm QW PL also has a larger blueshift and FWHM variation than the 15-nm QW as the temperature increases from 10 to ~50 K. Finally, simulations of this system which correlate with the experimental observations indicate that a thin QW must be more affected by interface fluctuations and their resulting potential fluctuations than a thick QW. This work provides useful information on guiding the growth to achieve optimized InGaAs/InAlAs QWs for applications with different QW thicknesses

    Extra Families, Higgs Spectrum and Oblique Corrections

    Get PDF
    The standard model accommodates, but does not explain, three families of leptons and quarks, while various extensions suggest extra matter families. The oblique corrections from extra chiral families with relatively light (weak-scale) masses, MfM_{f} \sim , are analyzed and used to constrain the number of extra families and their spectrum. The analysis is motivated, in part, by recent N = 2 supersymmetry constructions, but is performed in a model-independent way. It is shown that the correlations among the contributions to the three oblique parameters, rather than the contribution to a particular one, provide the most significant bound. Nevertheless, a single extra chiral family with a constrained spectrum is found to be consistent with precision data without requiring any other new physics source. Models with three additional families may also be accommodated but only by invoking additional new physics, most notably, a two-Higgs-doublet extension. The interplay between the spectra of the extra fermions and the Higgs boson(s) is analyzed in the case of either one or two Higgs doublets, and its implications are explored. In particular, the precision bound on the SM-like Higgs boson mass is shown to be significantly relaxed in the presence of an extra relatively light chiral family.Comment: 20 pages, 8 figures, version for PR
    corecore