174 research outputs found
Nucleon isovector structure functions in (2+1)-flavor QCD with domain wall fermions
We report on numerical lattice QCD calculations of some of the low moments of
the nucleon structure functions. The calculations are carried out with gauge
configurations generated by the RBC and UKQCD collaborations with (2+1)-flavors
of dynamical domain wall fermions and the Iwasaki gauge action (). The inverse lattice spacing is GeV, and two spatial
volumes of ((2.7{\rm fm})^3) and ((1.8 {\rm fm})^3) are used. The up and down
quark masses are varied so the pion mass lies between 0.33 and 0.67 GeV while
the strange mass is about 12 % heavier than the physical one. The structure
function moments we present include fully non-perturbatively renormalized
iso-vector quark momentum fraction, (_{u-d}), helicity fraction, (< x
>_{\Delta u - \Delta d}), and transversity, (_{\delta u - \delta d}), as
well as an unrenormalized twist-3 coefficient, (d_1). The ratio of the momentum
to helicity fractions, (_{u-d}/_{\Delta u - \Delta d}), does not show
dependence on the light quark mass and agrees well with the value obtained from
experiment. Their respective absolute values, fully renormalized, show
interesting trends toward their respective experimental values at the lightest
quark mass. A prediction for the transversity, (0.7 _{\delta u -\delta
d} < 1.1), in the (\bar{\rm MS}) scheme at 2 GeV is obtained. The twist-3
coefficient, (d_1), though yet to be renormalized, supports the perturbative
Wandzura-Wilczek relation.Comment: 14 pages, 22 figures
Localization and chiral symmetry in 2+1 flavor domain wall QCD
We present results for the dependence of the residual mass of domain wall
fermions (DWF) on the size of the fifth dimension and its relation to the
density and localization properties of low-lying eigenvectors of the
corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1
flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate
ensembles of configurations with a space-time volume and an
extent of 8 in the fifth dimension for the sea quarks. We demonstrate the
existence of a regime where the degree of locality, the size of chiral symmetry
breaking and the rate of topology change can be acceptable for inverse lattice
spacings GeV.Comment: 59 Pages, 23 figures, 1 MPG linke
Continuum Limit of from 2+1 Flavor Domain Wall QCD
We determine the neutral kaon mixing matrix element in the continuum
limit with 2+1 flavors of domain wall fermions, using the Iwasaki gauge action
at two different lattice spacings. These lattice fermions have near exact
chiral symmetry and therefore avoid artificial lattice operator mixing.
We introduce a significant improvement to the conventional NPR method in
which the bare matrix elements are renormalized non-perturbatively in the
RI-MOM scheme and are then converted into the MSbar scheme using continuum
perturbation theory. In addition to RI-MOM, we introduce and implement four
non-exceptional intermediate momentum schemes that suppress infrared
non-perturbative uncertainties in the renormalization procedure. We compute the
conversion factors relating the matrix elements in this family of RI-SMOM
schemes and MSbar at one-loop order. Comparison of the results obtained using
these different intermediate schemes allows for a more reliable estimate of the
unknown higher-order contributions and hence for a correspondingly more robust
estimate of the systematic error. We also apply a recently proposed approach in
which twisted boundary conditions are used to control the Symanzik expansion
for off-shell vertex functions leading to a better control of the
renormalization in the continuum limit.
We control chiral extrapolation errors by considering both the NLO SU(2)
chiral effective theory, and an analytic mass expansion. We obtain
B_K^{\msbar}(3 GeV) = 0.529(5)_{stat}(15)_\chi(2)_{FV}(11)_{NPR}. This
corresponds to . Adding
all sources of error in quadrature we obtain , with an overall combined error of 3.6%.Comment: 65 page
Light Hadron Spectrum in Quenched Lattice QCD with Staggered Quarks
Without chiral extrapolation, we achieved a realistic nucleon to (\rho)-meson
mass ratio of (m_N/m_\rho = 1.23 \pm 0.04 ({\rm statistical}) \pm 0.02 ({\rm
systematic})) in our quenched lattice QCD numerical calculation with staggered
quarks. The systematic error is mostly from finite-volume effect and the
finite-spacing effect is negligible. The flavor symmetry breaking in the pion
and (\rho) meson is no longer visible. The lattice cutoff is set at 3.63 (\pm)
0.06 GeV, the spatial lattice volume is (2.59 (\pm) 0.05 fm)(^3), and bare
quarks mass as low as 4.5 MeV are used. Possible quenched chiral effects in
hadron mass are discussed.Comment: 5 pages and 5 figures, use revtex
Deconfinement transition and string tensions in SU(4) Yang-Mills Theory
We present results from numerical lattice calculations of SU(4) Yang-Mills
theory. This work has two goals: to determine the order of the finite
temperature deconfinement transition on an lattice and to study the
string tensions between static charges in the irreducible representations of
SU(4). Motivated by Pisarski and Tytgat's argument that a second-order
SU() deconfinement transition would explain some features of the SU(3)
and QCD transitions, we confirm older results on a coarser, , lattice.
We see a clear two-phase coexistence signal, characteristic of a first-order
transition, at on a lattice, on which we also
compute a latent heat of . Computing
Polyakov loop correlation functions we calculate the string tension at finite
temperature in the confined phase between fundamental charges, ,
between diquark charges, , and between adjoint charges . We
find that , and our result for the adjoint string
tension is consistent with string breaking.Comment: 10 pages with included figures. For version 2: New calculation and
discussion of latent heat added; 2 new figures and 1 new table. Typo in
abstract corrected for v3. To appear in Physical Review
Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front.
Antitumoral immunity requires organized, spatially nuanced interactions between components of the immune tumor microenvironment (iTME). Understanding this coordinated behavior in effective versus ineffective tumor control will advance immunotherapies. We re-engineered co-detection by indexing (CODEX) for paraffin-embedded tissue microarrays, enabling simultaneous profiling of 140 tissue regions from 35 advanced-stage colorectal cancer (CRC) patients with 56 protein markers. We identified nine conserved, distinct cellular neighborhoods (CNs)-a collection of components characteristic of the CRC iTME. Enrichment of PD-1+CD4+ TÂ cells only within a granulocyte CN positively correlated with survival in a high-risk patient subset. Coupling of tumor and immune CNs, fragmentation of TÂ cell and macrophage CNs, and disruption of inter-CN communication was associated with inferior outcomes. This study provides a framework for interrogating how complex biological processes, such as antitumoral immunity, occur through concerted actions of cells and spatial domains
The G-Protein β3 subunit 825 TT genotype is associated with epigastric pain syndrome-like dyspepsia
<p>Abstract</p> <p>Background</p> <p>Although familial clustering of functional dyspepsia (FD) has been reported, the role of genetics in the susceptibility to FD is still not well understood. Several reports indicate an association between FD and G-protein β3 (GNB3) subunit gene polymorphism (C825T); however, these studies had small sample sizes and the findings are inconclusive. In the present study we clarified the association between GNB3 gene polymorphism and dyspepsia in a large population of Japanese subjects who visited a hospital for annual health check-up.</p> <p>Methods</p> <p>Subjects with significant upper gastrointestinal findings were excluded. Subjects with dyspeptic symptoms were divided into either a postprandial distress syndrome (PDS) group or an epigastric pain syndrome (EPS) group according to the Rome III criteria. The presence of the GNB3 C825T polymorphism was then evaluated and logistic regression analysis was used to test all variables.</p> <p>Results</p> <p>The GNB3 genotype distribution in subjects without dyspepsia was 191 CC (25.1%), 368 TC (48.4%), and 202 TT (26.5%) and 17 CC (25.0%), 29 TC (42.6%), and 22 TT (32.4%) in subjects with dyspepsia. No significant correlation was found between the GNB3 825TT genotype and dyspepsia. However, the TT genotype was significantly associated with subjects with EPS-like symptoms (odds ratio (OR) = 2.00, 95% confidence interval (CI); 1.07-3.76) compared to the CT/CC genotype adjusted for gender and age. No significant correlation was found between GNB3 polymorphism and PDS-like symptoms (OR = 0.68, 95% CI; 0.31-1.51). With the exclusion of subjects with both EPS- and PDS-like symptoms, only the TT genotype was significantly associated with EPS-like symptoms (OR = 2.73, 95% CI; 1.23-5.91).</p> <p>Conclusion</p> <p>The homozygous GNB3 825T allele influences the susceptibility to EPS-like dyspepsia.</p
Cytocompatibility of Medical Biomaterials Containing Nickel by Osteoblasts: a Systematic Literature Review
The present review is based on a survey of 21 studies on the cytocompatibility of medical biomaterials containing nickel, as assessed by cell culture of human and animal osteoblasts or osteoblast-like cells. Among the biomaterials evaluated were stainless steel, NiTi alloys, pure Ni, Ti, and other pure metals. The materials were either commercially available, prepared by the authors, or implanted by various techniques to generate a protective layer of oxides, nitrides, acetylides. The observation that the layers significantly reduced the initial release of metal ions and increased cytocompatibility was confirmed in cell culture experiments. Physical and chemical characterization of the materials was performed. This included, e.g., surface characterization (roughness, wettability, corrosion behavior, quantity of released ions, microhardness, and characterization of passivation layer). Cytocompatibility tests of the materials were conducted in the cultures of human or animal osteoblasts and osteoblast-like cells. The following assays were carried out: cell proliferation and viability test, adhesion test, morphology (by fluorescent microscopy or SEM). Also phenotypic and genotypic markers were investigated. In the majority of works, it was found that the most cytocompatible materials were stainless steel and NiTi alloy. Pure Ni was rendered and less cytocompatible. All the papers confirmed that the consequence of the formation of protective layers was in significant increase of cytocompatibility of the materials. This indicates the possible further modifications of the manufacturing process (formation of the passivation layer)
Comparative molecular biological analysis of membrane transport genes in organisms
Comparative analyses of membrane transport genes revealed many differences in the features of transport homeostasis in eight diverse organisms, ranging from bacteria to animals and plants. In bacteria, membrane-transport systems depend mainly on single genes encoding proteins involved in an ATP-dependent pump and secondary transport proteins that use H+ as a co-transport molecule. Animals are especially divergent in their channel genes, and plants have larger numbers of P-type ATPase and secondary active transporters than do other organisms. The secondary transporter genes have diverged evolutionarily in both animals and plants for different co-transporter molecules. Animals use Na+ ions for the formation of concentration gradients across plasma membranes, dependent on secondary active transporters and on membrane voltages that in turn are dependent on ion transport regulation systems. Plants use H+ ions pooled in vacuoles and the apoplast to transport various substances; these proton gradients are also dependent on secondary active transporters. We also compared the numbers of membrane transporter genes in Arabidopsis and rice. Although many transporter genes are similar in these plants, Arabidopsis has a more diverse array of genes for multi-efflux transport and for response to stress signals, and rice has more secondary transporter genes for carbohydrate and nutrient transport
- …