615 research outputs found

    Effect of inlet disturbances on fan inlet noise during a static test

    Get PDF
    Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data

    BORIS/CTCFL is an RNA-binding protein that associates with polysomes

    Get PDF
    © 2013 Ogunkolade et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Coverage of obesity treatment: A state-by-state analysis of Medicaid and state insurance laws

    Get PDF
    Objectives. We determined whether state Medicaid programs cover recommended treatments for adult and pediatric obesity and to what extent states regulate the treatment and coverage of obesity by private insurers. Methods. We conducted a state-by-state document review of Medicaid manuals and private insurance laws and regulations. Results. Eight state Medicaid programs appear to cover all recommended obesity treatment modalities for adults. Only 10 states appear to reimburse for obesity-related treatment in children. In the small-group insurance market, 35 states expressly allow obesity to be used for rate adjustments, while 10 states do so in the individual market. Two states expressly allow obesity to be used in eligibility decisions in the individual market. Five states provide for coverage of one or more treatments for obesity in both small-group and individual markets. Conclusions. Very few states ensure coverage of recommended treatments for adult and pediatric obesity through Medicaid or private insurance. Most states allow obesity to be used to adjust rates in the small-group and individual markets and to deny coverage in the individual market

    Solving the 3D Ising Model with the Conformal Bootstrap

    Get PDF
    We study the constraints of crossing symmetry and unitarity in general 3D Conformal Field Theories. In doing so we derive new results for conformal blocks appearing in four-point functions of scalars and present an efficient method for their computation in arbitrary space-time dimension. Comparing the resulting bounds on operator dimensions and OPE coefficients in 3D to known results, we find that the 3D Ising model lies at a corner point on the boundary of the allowed parameter space. We also derive general upper bounds on the dimensions of higher spin operators, relevant in the context of theories with weakly broken higher spin symmetries.Comment: 32 pages, 11 figures; v2: refs added, small changes in Section 5.3, Fig. 7 replaced; v3: ref added, fits redone in Section 5.

    Enzymatic degradation ofRNAcauses widespread protein aggregation in cell and tissue lysates

    Get PDF
    Most proteins in cell and tissue lysates are soluble. We show here that in lysate from human neurons, more than 1,300 proteins are maintained in a soluble and functional state by association with endogenous RNA, as degradation of RNA invariably leads to protein aggregation. The majority of these proteins lack conventional RNA‐binding domains. Using synthetic oligonucleotides, we identify the importance of nucleic acid structure, with single‐stranded pyrimidine‐rich bulges or loops surrounded by double‐stranded regions being particularly efficient in the maintenance of protein solubility. These experiments also identify an apparent one‐to‐one protein‐nucleic acid stoichiometry. Furthermore, we show that protein aggregates isolated from brain tissue from Amyotrophic Lateral Sclerosis patients can be rendered soluble after refolding by both RNA and synthetic oligonucleotides. Together, these findings open new avenues for understanding the mechanism behind protein aggregation and shed light on how certain proteins remain soluble

    Analysis of circulating protein aggregates as a route of investigation into neurodegenerative disorders.

    Get PDF
    Plasma proteome composition reflects the inflammatory and metabolic state of the organism and can be predictive of system-level and organ-specific pathologies. Circulating protein aggregates are enriched with neurofilament heavy chain-axonal proteins involved in brain aggregate formation and recently identified as biomarkers of the fatal neuromuscular disorder amyotrophic lateral sclerosis. Using unbiased proteomic methods, we have fully characterized the content in neuronal proteins of circulating protein aggregates from amyotrophic lateral sclerosis patients and healthy controls, with reference to brain protein aggregate composition. We also investigated circulating protein aggregate protein aggregation propensity, stability to proteolytic digestion and toxicity for neuronal and endothelial cell lines. Circulating protein aggregates separated by ultracentrifugation are visible as electron-dense macromolecular particles appearing as either large globular or as small filamentous formations. Analysis by mass spectrometry revealed that circulating protein aggregates obtained from patients are enriched with proteins involved in the proteasome system, possibly reflecting the underlying basis of dysregulated proteostasis seen in the disease, while those from healthy controls show enrichment of proteins involved in metabolism. Compared to the whole human proteome, proteins within circulating protein aggregates and brain aggregates show distinct chemical features of aggregation propensity, which appear dependent on the tissue or fluid of origin and not on the health status. Neurofilaments' two high-mass isoforms (460 and 268 kDa) showed a strong differential expression in amyotrophic lateral sclerosis compared to healthy control circulating protein aggregates, while aggregated neurofilament heavy chain was also partially resistant to enterokinase proteolysis in patients, demonstrated by immunoreactive bands at 171 and 31 kDa fragments not seen in digested healthy controls samples. Unbiased proteomics revealed that a total of 4973 proteins were commonly detected in circulating protein aggregates and brain, including 24 expressed from genes associated with amyotrophic lateral sclerosis. Interestingly, 285 circulating protein aggregate proteins (5.7%) were regulated (P < 0.05) and are present in biochemical pathways linked to disease pathogenesis and protein aggregation. Biologically, circulating protein aggregates from both patients and healthy controls had a more pronounced effect on the viability of hCMEC/D3 endothelial and PC12 neuronal cells compared to immunoglobulins extracted from the same plasma samples. Furthermore, circulating protein aggregates from patients exerted a more toxic effect than healthy control circulating protein aggregates on both cell lines at lower concentrations (P: 0.03, in both cases). This study demonstrates that circulating protein aggregates are significantly enriched with brain proteins which are representative of amyotrophic lateral sclerosis pathology and a potential source of biomarkers and therapeutic targets for this incurable disorder
    corecore