1,152 research outputs found

    Lifelongα-tocopherol supplementation increases the median life span of C57BL/6 mice in the cold but has only minor effects on oxidative damage

    Get PDF
    The effects of dietary antioxidant supplementation on oxidative stress and life span are confused. We maintained C57BL/6 mice at 7 ± 2°C and supplemented their diet with α-tocopherol from 4 months of age. Supplementation significantly increased (p = 0.042) median life span by 15% (785 days, n = 44) relative to unsupplemented controls (682 days, n = 43) and also increased maximum life span (oldest 10%, p = 0.028). No sex or sex by treatment interaction effects were observed on life span, with treatment having no effect on resting or daily metabolic rate. Lymphocyte and hepatocyte oxidative DNA damage and hepatic lipid peroxidation were unaffected by supplementation, but hepatic oxidative DNA damage increased with age. Using a cDNA macroarray, genes associated with xenobiotic metabolism were significantly upregulated in the livers of female mice at 6 months of age (2 months supplementation). At 22 months of age (18 months supplementation) this response had largely abated, but various genes linked to the p21 signaling pathway were upregulated at this time. We suggest that α-tocopherol may initially be metabolized as a xenobiotic, potentially explaining why previous studies observe a life span extension generally when lifelong supplementation is initiated early in life. The absence of any significant effect on oxidative damage suggests that the life span extension observed was not mediated via any antioxidant properties of α-tocopherol. We propose that the life span extension observed following α-tocopherol supplementation may be mediated via upregulation of cytochrome p450 genes after 2 months of supplementation and/or upregulation of p21 signaling genes after 18 months of supplementation. However, these signaling pathways now require further investigation to establish their exact role in life span extension following α-tocopherol supplementation

    Testing the carbohydrate insulin model in mice : Erroneous critique does not alter previous conclusion

    Get PDF
    We are grateful to Dr Kevin Hall of the NIH for comments on an earlier draft of this paper, and Dr Stephan Guyenet for his informative blog posts on the CIM. Our study of mouse diets was funded by the strategic research program of the Chinese Academy of Sciences (XDB13030100).Peer reviewedPublisher PD

    Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats

    Get PDF
    Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because—in contrast to feathered wings of birds—dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2°C between night and daytime flights, whereas mass-specific CO2 production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved

    Daily energy expenditure and water turnover in two breeds of laying hens kept in floor housing

    Get PDF
    Acknowledgements The authors thank Gabriele Kirchhof, Silke Werner, Klaus Gerling and Karsten Knop from the Institute of Animal Welfare and Animal Husbandry of the Friedrich-Loeffler-Institut for technical help and Catherine Hambly from the Institute of Biological and Environmental Sciences of the University of Aberdeen for the isotope analysis. Financial support statement This research received no specific grant from any funding agency, commercial or not-for-profit sectionPeer reviewedPublisher PD

    AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons

    Get PDF
    Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha 2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. in contrast, AgRPa2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha 2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus

    Assigning stranded bottlenose dolphins to source stocks using stable isotope ratios following the Deepwater Horizon oil spill

    Get PDF
    The potential for stranded dolphins to serve as a tool for monitoring free-ranging populations would be enhanced if their stocks of origin were known. We used stable isotopes of carbon, nitrogen, and sulfur from skin to assign stranded bottlenose dolphins Tursiops truncatus to different habitats, as a proxy for stocks (demographically independent populations), following the Deepwater Horizon oil spill. Model results from biopsy samples collected from dolphins from known habitats (n = 205) resulted in an 80.5% probability of correct assignment. These results were applied to data from stranded dolphins (n = 217), resulting in predicted assignment probabilities of 0.473, 0.172, and 0.355 to Estuarine, Barrier Island (BI), and Coastal stocks, respectively. Differences were found west and east of the Mississippi River, with more Coastal dolphins stranding in western Louisiana and more Estuarine dolphins stranding in Mississippi. Within the Estuarine East Stock, 2 groups were identified, one predominantly associated with Mississippi and Alabama estuaries and another with western Florida. δ15N values were higher in stranded samples for both Estuarine and BI stocks, potentially indicating nutritional stress. High probabilities of correct assignment of the biopsy samples indicate predictable variation in stable isotopes and fidelity to habitat. The power of δ34S to discriminate habitats relative to salinity was essential. Stable isotopes may provide guidance regarding where additional testing is warranted to confirm demographic independence and aid in determining the source habitat of stranded dolphins, thus increasing the value of biological data collected from stranded individuals.Publisher PDFPeer reviewe

    Attitudes to and Understanding of Risk of Acquisition of HIV Over Time: Design and Methods for an Internet-based Prospective Cohort Study Among UK Men Who Have Sex With Men (the AURAH2 Study)

    Get PDF
    Background: The annual number of new HIV infections among men who have sex with men (MSM) has risen in the UK and, of those HIV positive, the proportion undiagnosed is high. The prospective AURAH2 study aims to assess factors associated with HIV acquisition among MSM in the UK, and to investigate changes over time within individuals in sexual behaviour and HIV-testing practices. / Methods/Design: AURAH2 is a prospective study among MSM without diagnosed HIV, aiming to recruit up to 1000 sexually active MSM attending sexual health clinics in London and Brighton. Participants complete an initial paper-based questionnaire, followed by four monthly online follow-up questionnaires collecting socio-demographic, health and behavioural data, including sexual behaviour, recreational and other drug use, HIV testing practices and Pre-Exposure Prophylaxis use, over a planned three year period. / Discussion: The results from AURAH2 study will provide an important insight into established and emerging risk behaviours that may be associated with acquisition of HIV in MSM, in the UK, changes over time within individuals in sexual behaviour, and inform on HIV testing practices. This data will be crucial to inform future HIV prevention strategies

    Limits to sustained energy intake XXIV : impact of suckling behaviour on the body temperatures of lactating female mice

    Get PDF
    We would like to thank the animal house staff and all members of the Energetics group for their invaluable help at various stages throughout the project. This work was supported by Natural Environment Research Council grant (NERC, NE/C004159/1). YG was supported by a scholarship from the rotary foundation. LV was supported by a Rubicon grant from the Netherlands Scientific Organisation (NWO).Peer reviewedPublisher PD

    Attitudes to disclosure of HIV-serostatus to new sexual partners and sexual behaviours among HIV-diagnosed gay, bisexual and other men who have sex with men in the UK

    Get PDF
    We assessed attitudes to disclosure to new sexual partners and association with sexual behaviours among HIV-diagnosed gay, bisexual, and other men who have sex with men (GBMSM) in the UK Antiretrovirals, Sexual Transmission Risk and Attitudes (ASTRA) study in 2011-12. Among 1373 GBMSM diagnosed with HIV for ≥3 months and reporting sex in the past three months (84% on antiretroviral therapy (ART), 75% viral load (VL) ≤50c/mL), 56.3% reported higher sexual disclosure (“agree” or “tend to agree” with “I’d expect to tell a new partner I’m HIV-positive before we have sex”). GBMSM on ART with self-reported undetectable VL had lower disclosure than those on ART without self-reported undetectable VL and those not on ART. Higher sexual disclosure was associated with higher prevalence of CLS in the past three months; this was due to its association with CLS with other HIV-positive partners. Higher sexual disclosure was more common among GBMSM who had CLS with other HIV-positive partners only (72.1%) compared to those who had higher-risk CLS with HIV-serodifferent partners (55.6%), other CLS with HIV-serodifferent partners (45.9%), or condom-protected sex only (47.6%). Findings suggest mutual HIV-disclosure and HIV-serosorting were occurring in this population. Knowledge of VL status may have impacted on disclosure to sexual partners

    Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice

    Get PDF
    <p>Background: Dietary restriction (DR) extends lifespan and induces beneficial metabolic effects in many animals. What is far less clear is whether animals retain a metabolic memory to previous DR exposure, that is, can early-life DR preserve beneficial metabolic effects later in life even after the resumption of ad libitum (AL) feeding. We examined a range of metabolic parameters (body mass, body composition (lean and fat mass), glucose tolerance, fed blood glucose, fasting plasma insulin and insulin-like growth factor 1 (IGF-1), insulin sensitivity) in male C57BL/6 mice dietary switched from DR to AL (DR-AL) at 11 months of age (mid life). The converse switch (AL-DR) was also undertaken at this time. We then compared metabolic parameters of the switched mice to one another and to age-matched mice maintained exclusively on an AL or DR diet from early life (3 months of age) at 1 month, 6 months or 10 months post switch.</p> <p>Results: Male mice dietary switched from AL-DR in mid life adopted the metabolic phenotype of mice exposed to DR from early life, so by the 10-month timepoint the AL-DR mice overlapped significantly with the DR mice in terms of their metabolic phenotype. Those animals switched from DR-AL in mid life showed clear evidence of a glycemic memory, with significantly improved glucose tolerance relative to mice maintained exclusively on AL feeding from early life. This difference in glucose tolerance was still apparent 10 months after the dietary switch, despite body mass, fasting insulin levels and insulin sensitivity all being similar to AL mice at this time.</p> <p>Conclusions: Male C57BL/6 mice retain a long-term glycemic memory of early-life DR, in that glucose tolerance is enhanced in mice switched from DR-AL in mid life, relative to AL mice, even 10 months following the dietary switch. These data therefore indicate that the phenotypic benefits of DR are not completely dissipated following a return to AL feeding. The challenge now is to understand the molecular mechanisms underlying these effects, the time course of these effects and whether similar interventions can confer comparable benefits in humans.</p&gt
    corecore