6,575 research outputs found
A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2-D
A direct reconstruction algorithm for complex conductivities in
, where is a bounded, simply connected Lipschitz
domain in , is presented. The framework is based on the
uniqueness proof by Francini [Inverse Problems 20 2000], but equations relating
the Dirichlet-to-Neumann to the scattering transform and the exponentially
growing solutions are not present in that work, and are derived here. The
algorithm constitutes the first D-bar method for the reconstruction of
conductivities and permittivities in two dimensions. Reconstructions of
numerically simulated chest phantoms with discontinuities at the organ
boundaries are included.Comment: This is an author-created, un-copyedited version of an article
accepted for publication in [insert name of journal]. IOP Publishing Ltd is
not responsible for any errors or omissions in this version of the manuscript
or any version derived from it. The Version of Record is available online at
10.1088/0266-5611/28/9/09500
Preferential attachment of communities: the same principle, but a higher level
The graph of communities is a network emerging above the level of individual
nodes in the hierarchical organisation of a complex system. In this graph the
nodes correspond to communities (highly interconnected subgraphs, also called
modules or clusters), and the links refer to members shared by two communities.
Our analysis indicates that the development of this modular structure is driven
by preferential attachment, in complete analogy with the growth of the
underlying network of nodes. We study how the links between communities are
born in a growing co-authorship network, and introduce a simple model for the
dynamics of overlapping communities.Comment: 7 pages, 3 figure
Recommended from our members
Many ways to Rome: Exogenous and endogenous pathways to environmental and social performance
It is often taken for granted that corporate social responsibility (CSR) will bring about social benefits and environmental improvements. Yet there is little empirical evidence of outcomes of CSR initiatives for the natural environment or the wider society as studies have focused on the influence of CSR on financial performance rather than its societal outcomes. This study begins addressing this gap in the literature by empirically studying the environmental and social performance of CSR in 19 European companies. We analyse which configurations of institutional constraints and organizational CSR practices influence environmental and social performance. Based on this analysis, we identify two pathways that can lead to high environmental and social performance and we scrutinize configurations that lead to low performance. The exogenous pathway is characterized by the use of externally certified management tools and certificates and a high importance of external rating schemes. This pathway seems typical for large publicly listed firms. The endogenous pathway, in turn, includes firms that are characterized by internally developed means of conducting CSR
Miniature photonic-crystal hydrophone optimized for ocean acoustics
This work reports on an optical hydrophone that is insensitive to hydrostatic
pressure, yet capable of measuring acoustic pressures as low as the background
noise in the ocean in a frequency range of 1 Hz to 100 kHz. The miniature
hydrophone consists of a Fabry-Perot interferometer made of a photonic-crystal
reflector interrogated with a single-mode fiber, and is compatible with
existing fiber-optic technologies. Three sensors with different acoustic power
ranges placed within a sub-wavelength sized hydrophone head allow a high
dynamic range in the excess of 160 dB with a low harmonic distortion of better
than -30 dB. A method for suppressing cross coupling between sensors in the
same hydrophone head is also proposed. A prototype was fabricated, assembled,
and tested. The sensitivity was measured from 100 Hz to 100 kHz, demonstrating
a minimum detectable pressure down to 12 {\mu}Pa (1-Hz noise bandwidth), a
flatband wider than 10 kHz, and very low distortion
Directed network modules
A search technique locating network modules, i.e., internally densely
connected groups of nodes in directed networks is introduced by extending the
Clique Percolation Method originally proposed for undirected networks. After
giving a suitable definition for directed modules we investigate their
percolation transition in the Erdos-Renyi graph both analytically and
numerically. We also analyse four real-world directed networks, including
Google's own webpages, an email network, a word association graph and the
transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The
obtained directed modules are validated by additional information available for
the nodes. We find that directed modules of real-world graphs inherently
overlap and the investigated networks can be classified into two major groups
in terms of the overlaps between the modules. Accordingly, in the
word-association network and among Google's webpages the overlaps are likely to
contain in-hubs, whereas the modules in the email and transcriptional
regulatory networks tend to overlap via out-hubs.Comment: 21 pages, 10 figures, version 2: added two paragaph
A two-fluid model describing the finite-collisionality, stationary Alfvén wave in anisotropic plasma
The stationary inertial Alfvén (StIA) wave (Knudsen, 1996) was predicted for cold, collisionless plasma. The model was generalized (Finnegan et al., 2008) to include nonzero values of electron and ion collisional resistivity and thermal pressure. Here, the two-fluid model is further generalized to include anisotropic thermal pressure. A bounded range of values of parallel electron drift velocity is found that excludes periodic stationary Alfvén wave solutions. This exclusion region depends on the value of the local Alfvén speed VA, plasma beta perpendicular to the magnetic field β⊥ and electron temperature anisotropy
Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets
In the CERN NA63 collaboration we have addressed the question of the
potential inadequacy of the commonly used Migdal formulation of the
Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20
and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of
LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference
target, Ta. For each target and energy, a comparison between simulated values
based on the LPM suppression of incoherent bremsstrahlung is shown, taking
multi-photon effects into account. For these targets and energies, we find that
Migdal's theoretical formulation is adequate to a precision of better than
about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure
- …