119 research outputs found
Processing of insect retrotransposons by self-cleaving ribozymes
We show that several classes of insect non-LTR retrotransposons harbor self-cleaving ribozymes of the HDV family at their 5′ termini. In Drosophila the R2 ribozymes exhibit highly differential in vivo expression and robust in vitro activity, modulated by an upstream sequence originating from the insertion site. Our data suggest a role for self-cleaving ribozymes in co-transcriptional processing of retrotransposons with implications for downstream events, including translation and retrotransposition
Two-photon microperimetry: Sensitivity of human photoreceptors to infrared light
Microperimetry is a subjective ophthalmologic test used to assess retinal function at various specific and focal locations of the visual field. Historically, visible light has been described as ranging from 400 to 720 nm. However, we previously demonstrated that infra-red light can initiate visual transduction in rod photoreceptors by a mechanism of two-photon absorption by visual pigments. Here we introduce a newly designed and constructed two-photon microperimeter. We provide for the first time evidence of the presence of a nonlinear process occurring in the human retina based on psychophysical tests using newly developed instrumentation. Since infra-red light penetrates the aged front of the eye better than visible light, it has the potential for improved functional diagnostics in patients with age-related visual disorders
Gas adsorption and capillary condensation in nanoporous alumina films
"Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation."http://deepblue.lib.umich.edu/bitstream/2027.42/64187/1/nano8_31_315709.pd
Recommended from our members
Selective αv integrin depletion identifies a core, targetable molecular pathway that regulates fibrosis across solid organs
Myofibroblasts are the major source of extracellular matrix components that accumulate during tissue fibrosis, and hepatic stellate cells (HSCs) are the major source of myofibroblasts in the liver. To date, robust systems to genetically manipulate these cells have not existed. We report that Pdgfrb-Cre inactivates genes in murine HSCs with high efficiency. We used this system to delete the αv integrin subunit because of the suggested role of multiple αv integrins as central mediators of fibrosis in multiple organs. Depletion of the αv integrin subunit in HSCs protected mice from CCl4-induced hepatic fibrosis, whereas global loss of αvβ3, αvβ5 or αvβ6 or conditional loss of αvβ8 on HSCs did not. Pdgfrb-Cre effectively targeted myofibroblasts in multiple organs, and depletion of αv integrins using this system was also protective in models of pulmonary and renal fibrosis. Critically, pharmacological blockade of αv integrins by a novel small molecule (CWHM 12) attenuated both liver and lung fibrosis, even when administered after fibrosis was established. These data identify a core pathway that regulates fibrosis, and suggest that pharmacological targeting of all αv integrins may have clinical utility in the treatment of patients with a broad range of fibrotic diseases
Effect of surface interactions on the hysteresis of capillary condensation in nanopores
Gas adsorption and liquid desorption of a number of organic vapors in anodized nanoporous alumina, with controlled geometry (cylindrical pore diameters from 10 to 60 nm), are studied using optical interferometry. The narrow-diameter distribution of disconnected pores allows checking the validity of the (long-predicted but not experimentally verified) Kelvin equation without any adjustable parameters, modeling or other assumptions. Evaporation occurs at liquid-vapor equilibrium according to this equation, whereas condensation occurs from metastable states of the vapor phase by nucleation, enhanced by surface defects inside the nanopores. This produces hysteresis, in qualitative agreement with theoretical models and simulations that use Van der Waals interactions between the fluid and the pore surface. The reproducibility of the hysteresis depends on the strength of these interactions, which play an important role in the dynamics of capillary condensation
RNA motif search with data-driven element ordering
BACKGROUND: In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. RESULTS: We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. CONCLUSIONS: We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1074-x) contains supplementary material, which is available to authorized users
- …