45,626 research outputs found
Berkemer Revisited: Uncovering the Middle Ground Between Miranda and the New Terry
Over the past twenty-five years, appellate courts have significantly expanded the scope of police authority to stop and frisk potential suspects without probable cause, a power originally granted to law enforcement by the Supreme Court in Terry v. Ohio. This development has led Terry’s once limited licensing of police searches to run into conflict with a defendant’s right against compulsory self-incrimination while in police custody, as articulated by Miranda v. Arizona. This Note explores the contours of this unforeseen collision between two core constitutional doctrines and the solutions generated by appellate courts to resolve the conflict. Courts today are generally divided as to whether Miranda should apply during a valid, but intrusive Terry stop. This Note argues that a distinct overlap now exists between Miranda and Terry; one that should compel courts to invoke Miranda where police detain and question a suspect in a manner analogous to custodial interrogation. However, this Note also stresses that courts should be vigilant in enforcing the public safety exception to Miranda, particularly in light of Terry’s inherent unpredictability and extemporaneous nature
Theory of cubical complexes with applications to diagnosis and algorithmic description Quarterly report, 26 May - 10 Aug. 1970
Cubical complex theory with applications to diagnosis and algorithmic descriptio
A model for particle confinement in a toroidal plasma subject to strong radial electric fields
A toroidal plasma is confined and heated by the simultaneous application of strong d.c. magnetic fields and electric fields. Strong radial electric fields (about 1 kilovolt per centimeter) are imposed by biasing the plasma with up to 12 negative electrode rings which surround its minor circumference. The plasma containment is consistent with a balance of two processes: a radial infusion of ions in those sectors not containing electrode rings, resulting from the radially inward electric fields; and ion losses to the electrode rings, each of which acts as a sink and draws ions out the plasma in the manner of a Langmuir probe in the ion saturation regime. The highest density on axis which has been observed so far in this steady-state plasma is 6.2 x 10 to the 12th power particles per cubic centimeter, for which the particle containment time is 2.5 milliseconds. The deuterium ion kinetic temperature for these conditions was in the range of 360 to 520 eV
Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma
Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date
Optimization of confinement in a toroidal plasma subject to strong radial electric fields
A preliminary report on the identification and optimization of independent variables which affect the ion density and confinement time in a bumpy torus plasma is presented. The independent variables include the polarity, position, and number of the midplane electrode rings, the method of gas injection, and the polarity and strength of a weak vertical magnetic field. Some characteristic data taken under condition when most of the independent variables were optimized are presented. The highest value of the electron number density on the plasma axis is 3.2 x 10 to the 12th power/cc, the highest ion heating efficiency is 47 percent, and the longest particle containment time is 2.0 milliseconds
Energy distribution functions of kilovolt ions in a modified Penning discharge
The distribution function of ion energy parallel to the magnetic field of a Penning discharge was measured with a retarding potential energy analyzer. Simultaneous measurements of the ion energy distribution function perpendicular to the magnetic field were made with a charge-exchange neutral detector. The ion energy distribution functions are approximately Maxwellian, and their kinetic temperatures are equal within experimental error. This suggests that turbulent processes previously observed Maxwellianize the velocity distribution along a radius in velocity space, and result in an isotropic energy distribution. The kinetic temperatures are on the order of kilovolts, and the tails of the ion energy distribution functions are Maxwellian up to a factor of 7 e-folds in energy. When the distributions depart from Maxwellian, they are enhanced above the Maxwellian tail. Above densities of about 10 to the 10th power particles/cc, this enhancement appears to be the result of a second, higher temperature Maxwellian distribution. At these high particle energies, only the ions perpendicular to the magnetic field lines were investigated
Safety and environmental constraints on space applications of fusion energy
Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies
Ion heating and containment in the NASA Lewis bumpy torus plasma
Experimental observations have been made during steady state operation of a torus experiment at input powers up to 150 kilowatts in deuterium and helium gas. The steady state ion heating method utilizes a modified Penning discharge operated in a bumpy torus confinement geometry. The bumpy torus plasma is acted upon by a combination of strong electric and magnetic fields. In a deuterium plasma, electron temperatures from 14 to 140 electron volts and ion kinetic temperatures from 160 to 1785 electron volts were observed. At least two distinct operating regimes exist, each of which is associated with a characteristic range of background gas pressure and electron temperature. Experimental data show that the average ion residence time in the plasma is virtually independent of magnetic field strength
- …