154 research outputs found
Fourier Transform Infrared Spectroscopic Imaging and Multivariate Regression for Prediction of Proteoglycan Content of Articular Cartilage
Fourier Transform Infrared (FT-IR) spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG) contents of articular cartilage (AC). However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR) and principal component regression (PCR) methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O –stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization) or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used
T2 relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage
SummaryObjectiveThe magnetic resonance imaging (MRI) parameter T2 relaxation time has been shown to be sensitive to the collagen network architecture of articular cartilage. The aim of the study was to investigate the agreement of T2 relaxation time mapping and polarized light microscopy (PLM) for the determination of histological properties (i.e., zone and fibril organization) of articular cartilage.MethodsT2 relaxation time was determined at 9.4T field strength in healthy adult human, juvenile bovine and juvenile porcine patellar cartilage, and related to collagen anisotropy and fibril angle as measured by quantitative PLM.ResultsBoth T2 and PLM revealed a mutually consistent but varying number of collagen-associated laminae (3, 3–5 or 3–7 laminae in human, porcine and bovine cartilage, respectively). Up to 44% of the depth-wise variation in T2 was accounted for by the changing anisotropy of collagen fibrils, confirming that T2 contrast of articular cartilage is strongly affected by the collagen fibril anisotropy. A good correspondence was observed between the thickness of T2-laminae and collagenous zones as determined from PLM anisotropy measurements (r=0.91, r=0.95 and r=0.91 for human, bovine and porcine specimens, respectively).ConclusionsAccording to the present results, T2 mapping is capable of detecting histological differences in cartilage collagen architecture among species, likely to be strongly related to the differences in maturation of the tissue. This diversity in the MRI appearance of healthy articular cartilage should also be recognized when using juvenile animal tissue as a model for mature human cartilage in experimental studies
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit
SummaryObjectiveRecombinant human type II collagen (rhCII) gels combined with autologous chondrocytes were tested as a scaffold for cartilage repair in rabbits in vivo.MethodAutologous chondrocytes were harvested, expanded and combined with rhCII-gel and further pre-cultivated for 2 weeks prior to transplantation into a 4 mm diameter lesion created into the rabbit's femoral trochlea (n = 8). Rabbits with similar untreated lesions (n = 7) served as a control group.ResultsSix months after the transplantation the repair tissue in both groups filled the lesion site, but in the rhCII-repair the filling was more complete. Both repair groups also had high proteoglycan and type II collagen contents, except in the fibrous superficial layer. However, the integration to the adjacent cartilage was incomplete. The O'Driscoll grading showed no significant differences between the rhCII-repair and spontaneous repair, both representing lower quality than intact cartilage. In the repair tissues the collagen fibers were abnormally organized and oriented. No dramatic changes were detected in the subchondral bone structure. The repair cartilage was mechanically softer than the intact tissue. Spontaneously repaired tissue showed lower values of equilibrium and dynamic modulus than the rhCII-repair. However, the differences in the mechanical properties between all three groups were insignificant.ConclusionWhen rhCII was used to repair cartilage defects, the repair quality was histologically incomplete, but still the rhCII-repairs showed moderate mechanical characteristics and a slight improvement over those in spontaneous repair. Therefore, further studies using rhCII for cartilage repair with emphasis on improving integration and surface protection are required
Infrared microspectroscopic determination of collagen cross-links in articular cartilage
Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n = 27) were treated with threose to increase the collagen cross-linking while the other half (n = 27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r = 0.84 (p <0.001), r = 0.87 (p <0.001) and r = 0.92 (p <0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.Peer reviewe
Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography
Contrast-enhanced micro-computed tomography (CE mu CT) with phosphotungstic acid (PTA) has shown potential for detecting collagen distribution of articular cartilage. However, the selectivity of the PTA staining to articular cartilage constituents remains to be elucidated. The aim of this study was to investigate the dependence of PTA for the collagen content in bovine articular cartilage. Adjacent bovine articular cartilage samples were treated with chondroitinase ABC and collagenase to degrade the proteoglycan and the collagen constituents in articular cartilage, respectively. Enzymatically degraded samples were compared to the untreated samples using CE mu CT and reference methods, such as Fourier-transform infrared imaging. Decrease in the X-ray attenuation of PTA in articular cartilage and collagen content was observed in cartilage depth of 0-13% and deeper in tissue after collagen degradation. Increase in the X-ray attenuation of PTA was observed in the cartilage depth of 13- 39% after proteoglycan degradation. The X-ray attenuation of PTA-labelled articular cartilage in CE mu CT is associated mainly with collagen content but the proteoglycans have a minor effect on the X-ray attenuation of the PTA-labelled articular cartilage. In conclusion, the PTA labeling provides a feasible CE mu CT method for 3D characterization of articular cartilage.Peer reviewe
Critical-sized cartilage defects in the equine carpus
Aim: The horse joint, due to its similarity with the human joint, is the ultimate model for translational articular cartilage repair studies. This study was designed to determine the critical size of cartilage defects in the equine carpus and serve as a benchmark for the evaluation of new cartilage treatment options. Material and Methods: Circular full-thickness cartilage defects with a diameter of 2, 4, and 8 mm were created in the left middle carpal joint and similar osteochondral (3.5 mm in depth) defects in the right middle carpal joint of 5 horses. Spontaneously formed repair tissue was examined macroscopically, with MR and mu CT imaging, polarized light microscopy, standard histology, and immunohistochemistry at 12 months. Results: Filling of 2 mm chondral defects was good (77.8 +/- 8.5%), but proteoglycan depletion was evident in Safranin-O staining and gadolinium-enhanced MRI (T-1Gd). Larger chondral defects showed poor filling (50.6 +/- 2.7% in 4 mm and 31.9 +/- 7.3% in 8 mm defects). Lesion filling in 2, 4, and 8 mm osteochondral defects was 82.3 +/- 3.0%, 68.0 +/- 4.6% and 70.8 +/- 15.4%, respectively. Type II collagen staining was seen in 9/15 osteochondral defects but only in 1/15 chondral defects. Subchondral bone pathologies were evident in 14/15 osteochondral samples but only in 5/15 chondral samples. Although osteochondral lesions showed better neotissue quality than chondral lesions, the overall repair was deemed unsatisfactory because of the subchondral bone pathologies. Conclusion: We recommend classifying 4 mm as critical osteochondral lesion size and 2 mm as critical chondral lesion size for cartilage repair research in the equine carpal joint model.Peer reviewe
3D morphometric analysis of calcified cartilage properties using micro-computed tomography
Objective: Our aim is to establish methods for quantifying morphometric properties of calcified cartilage (CC) from micro-computed tomography (mu CT). Furthermore, we evaluated the feasibility of these methods in investigating relationships between osteoarthritis (OA), tidemark surface morphology and open subchondral channels (OSCCs). Method: Samples (n = 15) used in this study were harvested from human lateral tibial plateau (n = 8). Conventional roughness and parameters assessing local 3-dimensional (3D) surface variations were used to quantify the surface morphology of the CC. Subchondral channel properties (percentage, density, size) were also calculated. As a reference, histological sections were evaluated using Histopathological osteoarthritis grading (OARSI) and thickness of CC and subchondral bone (SCB) was quantified. Results: OARSI grade correlated with a decrease in local 3D variations of the tidemark surface (amount of different surface patterns (r(s) = -0.600, P = 0.018), entropy of patterns (EP) (r(s) = -0.648, P = 0.018), homogeneity index (HI) (r(s) = 0.555, P = 0.032)) and tidemark roughness (TMR) (r(s) = -0.579, P = 0.024). Amount of different patterns (ADP) and EP associated with channel area fraction (CAF) (r(p) = 0.876, P <0.0001; r(p) = 0.665, P = 0.007, respectively) and channel density (CD) (r(p) = 0.680, P = 0.011; r(p) = 0.582, P = 0.023, respectively). TMR was associated with CAF (r(p) = 0.926, P <0.0001) and average channel size (r(p) = 0.574, P = 0.025). CC topography differed statistically significantly in early OA vs healthy samples. Conclusion: We introduced a mu-CT image method to quantify 3D CC topography and perforations through CC. CC topography was associated with OARSI grade and OSCC properties; this suggests that the established methods can detect topographical changes in tidemark and CC perforations associated with OA. (c) 2018 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
3D morphometric analysis of calcified cartilage properties using micro-computed tomography
OBJECTIVE: Our aim is to establish methods for quantifying morphometric properties of calcified cartilage (CC) from micro-computed tomography (muCT). Furthermore, we evaluated the feasibility of these methods in investigating relationships between osteoarthritis (OA), tidemark surface morphology and open subchondral channels (OSCCs). METHOD: Samples (n = 15) used in this study were harvested from human lateral tibial plateau (n = 8). Conventional roughness and parameters assessing local 3-dimensional (3D) surface variations were used to quantify the surface morphology of the CC. Subchondral channel properties (percentage, density, size) were also calculated. As a reference, histological sections were evaluated using Histopathological osteoarthritis grading (OARSI) and thickness of CC and subchondral bone (SCB) was quantified. RESULTS: OARSI grade correlated with a decrease in local 3D variations of the tidemark surface (amount of different surface patterns (rs = -0.600, P = 0.018), entropy of patterns (EP) (rs = -0.648, P = 0.018), homogeneity index (HI) (rs = 0.555, P = 0.032)) and tidemark roughness (TMR) (rs = -0.579, P = 0.024). Amount of different patterns (ADP) and EP associated with channel area fraction (CAF) (rp = 0.876, P < 0.0001; rp = 0.665, P = 0.007, respectively) and channel density (CD) (rp = 0.680, P = 0.011; rp = 0.582, P = 0.023, respectively). TMR was associated with CAF (rp = 0.926, P < 0.0001) and average channel size (rp = 0.574, P = 0.025). CC topography differed statistically significantly in early OA vs healthy samples. CONCLUSION: We introduced a mu-CT image method to quantify 3D CC topography and perforations through CC. CC topography was associated with OARSI grade and OSCC properties; this suggests that the established methods can detect topographical changes in tidemark and CC perforations associated with OA
Composition of the pericellular matrix modulates the deformation behaviour of chondrocytes in articular cartilage under static loading
The aim was to assess the role of the composition changes in the pericellular matrix (PCM) for the chondrocyte deformation. For that, a three-dimensional finite element model with depth-dependent collagen density, fluid fraction, fixed charge density and collagen architecture, including parallel planes representing the split-lines, was created to model the extracellular matrix (ECM). The PCM was constructed similarly as the ECM, but the collagen fibrils were oriented parallel to the chondrocyte surfaces. The chondrocytes were modelled as poroelastic with swelling properties. Deformation behaviour of the cells was studied under 15% static compression. Due to the depth-dependent structure and composition of cartilage, axial cell strains were highly depth-dependent. An increase in the collagen content and fluid fraction in the PCMs increased the lateral cell strains, while an increase in the fixed charge density induced an inverse behaviour. Axial cell strains were only slightly affected by the changes in PCM composition. We conclude that the PCM composition plays a significant role in the deformation behaviour of chondrocytes, possibly modulating cartilage development, adaptation and degeneration. The development of cartilage repair materials could benefit from this information
- …