475 research outputs found
Spectrally dependent photovoltages in Schottky photodiode based on (100) B-doped diamond
Spectrally and spatially resolved photovoltages were measured by Kelvin probe force microscopy (KPFM) on a Schottky photo-diode made of a 4 nm thin tungsten-carbide (WC) layer on a 500 nm oxygen-terminated boron-doped diamond epitaxial layer (O-BDD) that was grown on a Ib (100) diamond substrate. The diode was grounded by the sideways ohmic contact (Ti/WC), and the semitransparent Schottky contact was let unconnected. The electrical potentials across the device were measured in dark (only 650 nm LED of KPFM being on), under broad-band white light (halogen lamp), UV (365 nm diode), and deep ultraviolet (deuterium lamp) illumination. Illumination induced shift of the electrical potential remains within 210 mV. We propose that the photovoltage actually corresponds to a shift of Fermi level inside the BDD channel and thereby explains orders of magnitude changes in photocurrent. (C) 2014 AIP Publishing LLC
Transitionless quantum drivings for the harmonic oscillator
Two methods to change a quantum harmonic oscillator frequency without
transitions in a finite time are described and compared. The first method, a
transitionless-tracking algorithm, makes use of a generalized harmonic
oscillator and a non-local potential. The second method, based on engineering
an invariant of motion, only modifies the harmonic frequency in time, keeping
the potential local at all times.Comment: 11 pages, 1 figure. Submitted for publicatio
Irreversible Performance of a Quantum Harmonic Heat Engine
The unavoidable irreversible losses of power in a heat engine are found to be
of quantum origin. Following thermodynamic tradition a model quantum heat
engine operating by the Otto cycle is analyzed. The working medium of the model
is composed of an ensemble of harmonic oscillators. A link is established
between the quantum observables and thermodynamical variables based on the
concept of canonical invariance. These quantum variables are sufficient to
determine the state of the system and with it all thermodynamical variables.
Conditions for optimal work, power and entropy production show that maximum
power is a compromise between the quasistatic limit of adiabatic following on
the compression and expansion branches and a sudden limit of very short time
allocation to these branches. At high temperatures and quasistatic operating
conditions the efficiency at maximum power coincides with the endoreversible
result. The optimal compression ratio varies from the square root of the
temperature ratio in the quasistatic limit where their reversibility is
dominated by heat conductance to the temperature ratio to the power of 1/4 in
the sudden limit when the irreversibility is dominated by friction. When the
engine deviates from adiabatic conditions the performance is subject to
friction. The origin of this friction can be traced to the noncommutability of
the kinetic and potential energy of the working medium.Comment: 25 pages, 7 figures. Revision added explicit heat-transfer expression
and extended the discussion on the quantum origin of frictio
Wavelet analysis of epileptic spikes
Interictal spikes and sharp waves in human EEG are characteristic signatures
of epilepsy. These potentials originate as a result of synchronous,
pathological discharge of many neurons. The reliable detection of such
potentials has been the long standing problem in EEG analysis, especially after
long-term monitoring became common in investigation of epileptic patients. The
traditional definition of a spike is based on its amplitude, duration,
sharpness, and emergence from its background. However, spike detection systems
built solely around this definition are not reliable due to the presence of
numerous transients and artifacts. We use wavelet transform to analyze the
properties of EEG manifestations of epilepsy. We demonstrate that the behavior
of wavelet transform of epileptic spikes across scales can constitute the
foundation of a relatively simple yet effective detection algorithm.Comment: 4 pages, 3 figure
The smallest refrigerators can reach maximal efficiency
We investigate whether size imposes a fundamental constraint on the
efficiency of small thermal machines. We analyse in detail a model of a small
self-contained refrigerator consisting of three qubits. We show analytically
that this system can reach the Carnot efficiency, thus demonstrating that there
exists no complementarity between size and efficiency.Comment: 9 pages, 1 figure. v2: published versio
A stochastic model for heart rate fluctuations
Normal human heart rate shows complex fluctuations in time, which is natural,
since heart rate is controlled by a large number of different feedback control
loops. These unpredictable fluctuations have been shown to display fractal
dynamics, long-term correlations, and 1/f noise. These characterizations are
statistical and they have been widely studied and used, but much less is known
about the detailed time evolution (dynamics) of the heart rate control
mechanism. Here we show that a simple one-dimensional Langevin-type stochastic
difference equation can accurately model the heart rate fluctuations in a time
scale from minutes to hours. The model consists of a deterministic nonlinear
part and a stochastic part typical to Gaussian noise, and both parts can be
directly determined from the measured heart rate data. Studies of 27 healthy
subjects reveal that in most cases the deterministic part has a form typically
seen in bistable systems: there are two stable fixed points and one unstable
one.Comment: 8 pages in PDF, Revtex style. Added more dat
Impact of AFM-induced nano-pits in a-Si:H films on silicon crystal growth
Conductive tips in atomic force microscopy (AFM) can be used to localize field-enhanced metal-induced solid-phase crystallization (FE-MISPC) of amorphous silicon (a-Si:H) at room temperature down to nanoscale dimensions. In this article, the authors show that such local modifications can be used to selectively induce further localized growth of silicon nanocrystals. First, a-Si:H films by plasma-enhanced chemical vapor deposition on nickel/glass substrates are prepared. After the FE-MISPC process, yielding both conductive and non-conductive nano-pits in the films, the second silicon layer at the boundary condition of amorphous and microcrystalline growth is deposited. Comparing AFM morphology and current-sensing AFM data on the first and second layers, it is observed that the second deposition changes the morphology and increases the local conductivity of FE-MISPC-induced pits by up to an order of magnitude irrespective of their prior conductivity. This is attributed to the silicon nanocrystals (<100 nm) that tend to nucleate and grow inside the pits. This is also supported by micro-Raman spectroscopy
Guided assembly of nanoparticles on electrostatically charged nanocrystalline diamond thin films
We apply atomic force microscope for local electrostatic charging of oxygen-terminated nanocrystalline diamond (NCD) thin films deposited on silicon, to induce electrostatically driven self-assembly of colloidal alumina nanoparticles into micro-patterns. Considering possible capacitive, sp2 phase and spatial uniformity factors to charging, we employ films with sub-100 nm thickness and about 60% relative sp2 phase content, probe the spatial material uniformity by Raman and electron microscopy, and repeat experiments at various positions. We demonstrate that electrostatic potential contrast on the NCD films varies between 0.1 and 1.2 V and that the contrast of more than ±1 V (as detected by Kelvin force microscopy) is able to induce self-assembly of the nanoparticles via coulombic and polarization forces. This opens prospects for applications of diamond and its unique set of properties in self-assembly of nano-devices and nano-systems
- …
