761 research outputs found

    Soma-Axon Coupling Configurations That Enhance Neuronal Coincidence Detection

    Get PDF
    Coincidence detector neurons transmit timing information by responding preferentially to concurrent synaptic inputs. Principal cells of the medial superior olive (MSO) in the mammalian auditory brainstem are superb coincidence detectors. They encode sound source location with high temporal precision, distinguishing submillisecond timing differences among inputs. We investigate computationally how dynamic coupling between the input region (soma and dendrite) and the spike-generating output region (axon and axon initial segment) can enhance coincidence detection in MSO neurons. To do this, we formulate a two-compartment neuron model and characterize extensively coincidence detection sensitivity throughout a parameter space of coupling configurations. We focus on the interaction between coupling configuration and two currents that provide dynamic, voltage-gated, negative feedback in subthreshold voltage range: sodium current with rapid inactivation and low-threshold potassium current, IKLT. These currents reduce synaptic summation and can prevent spike generation unless inputs arrive with near simultaneity. We show that strong soma-to-axon coupling promotes the negative feedback effects of sodium inactivation and is, therefore, advantageous for coincidence detection. Furthermore, the feedforward combination of strong soma-to-axon coupling and weak axon-to-soma coupling enables spikes to be generated efficiently (few sodium channels needed) and with rapid recovery that enhances high-frequency coincidence detection. These observations detail the functional benefit of the strongly feedforward configuration that has been observed in physiological studies of MSO neurons. We find that IKLT further enhances coincidence detection sensitivity, but with effects that depend on coupling configuration. For instance, in models with weak soma-to-axon and weak axon-to-soma coupling, IKLT in the axon enhances coincidence detection more effectively than IKLT in the soma. By using a minimal model of soma-to-axon coupling, we connect structure, dynamics, and computation. Although we consider the particular case of MSO coincidence detectors, our method for creating and exploring a parameter space of two-compartment models can be applied to other neurons

    Drug-induced heart failure

    Get PDF
    AbstractHeart failure is a clinical syndrome that is predominantly caused by cardiovascular disorders such as coronary heart disease and hypertension. However, several classes of drugs may induce heart failure in patients without concurrent cardiovascular disease or may precipitate the occurrence of heart failure in patients with preexisting left ventricular impairment. We reviewed the literature on drug-induced heart failure, using the MEDLINE database and lateral references. Successively, we discuss the potential role in the occurrence of heart failure of cytostatics, immunomodulating drugs, antidepressants, calcium channel blocking agents, nonsteroidal anti-inflammatory drugs, antiarrhythmics, beta-adrenoceptor blocking agents, anesthetics and some miscellaneous agents. Drug-induced heart failure may play a role in only a minority of the patients presenting with heart failure. Nevertheless, drug-induced heart failure should be regarded as a potentially preventable cause of heart failure, although sometimes other priorities do not offer therapeutic alternatives (e.g., anthracycline-induced cardiomyopathy). The awareness of clinicians of potential adverse effects on cardiac performance by several classes of drugs, particularly in patients with preexisting ventricular dysfunction, may contribute to timely diagnosis and prevention of drug-induced heart failure

    Hemodynamic tolerability and anti-ischemic efficacy of high dose intravenous diltiazem in patients with normal versus impaired ventricular function

    Get PDF
    AbstractObjectives. This study was designed to compare the acute systemic and coronary hemodynamic effects of high doses of intravenous diltiazem in patients with normal versus impaired left ventricular function, investigate the safety of this drug and compare its anti-ischemic potential in these two patient groups during pacing-induced stress.Background. Because coronary hemodynamic effects and negative inotropic properties of diltiazem are dose related, high dose intravenous diltiazem may improve anti-ischemic efficacy but may not be tolerated in patients with impaired cardiac function.Methods. High dose intravenous diltiazem, 0.4 mg/kg for 5 min followed by 0.4 mg/kg for 10 min, was administered to 23 normotensive patient's with coronary artery disease, 11 (group A) with normal and 12 (group B) with impaired ventricular function (ejection fraction <45%) during two identical atrial pacing stress tests performed 30 min before (pacing test I) and immediately after diltiazem (pacing test II).Results. Diltiazem was well tolerated despite high peak plasma levels, 869 ± 152 μ/liter (group A) and 926 ± 169 μgliter (group B). It resulted in immediate but similar reductions in systemic resistance from 1,321 ± 136 (control value) to 963 ± 113 dynes·s·cm−5(group A) and from 1,267 ± 106 to 865 ± 58 dynes ·s·cm−5(group B) and in mean arterial pressure from 107 ± 3 to 93 ± 4 mm Hg (group A) and from 103 ± 4 to 86 ± 4 mm Hg (group B), at 5 min after diltiazem (all p < 0.05 vs. control value). Diltiazem improved stroke output from 36 ± 3 (control value) to 46 ± 4 mi/beat per m2in group 6 and from 44 ± 4 (control value) to 49 ± 5 ml/beat per m2in group A, an effect that was significantly greater and more prolonged in group B than in group A. Although neither heart rate nor contractility was affected in either group, left ventricular end-diastolic pressure increased in group A (9 ± 2 mm Hg to 12 ± 1 mm Hg, p < 0.05) but not in group B. Despite similar reductions in coronary resistance and improvements in coronary flow, diltiazem consistently reduced myocardial oxygen extraction, but only in group B. Also, the anti-ischemic effects of diltiazem were more pronounced in group B. During pacing test II, myocardial lactate extraction normalized in group B (7 ± 5% vs. −6 ± 12% [pacing test I]) but not in group A, contractility indexes improved more and the increase in left ventricular filling pressure was reduced to a greater extent in group B. Moreover, the ischemia-induced increase in arterial pressures, observed in both groups during pacing test I, was prevented in group B but recurred in group A during pacing test II.Conclusions. High dose intravenous diltiazem is well tolerated, augments coronary flow and improves left ventricular pump function, particularly in patients with preexisting ventricular dysfunction. As its anti-ischemic effects also appear more pronounced in the latter group, high dose diltiazem may be particularly useful when ventricular function is depressed, for example, during prolonged ischemia at rest

    Feasibility of Onchocerciasis Elimination with Ivermectin Treatment in Endemic Foci in Africa: First Evidence from Studies in Mali and Senegal

    Get PDF
    The control of onchocerciasis, or river blindness, is based on annual or six-monthly ivermectin treatment of populations at risk. This has been effective in controlling the disease as a public health problem, but it is not known whether it can also eliminate infection and transmission to the extent that treatment can be safely stopped. Many doubt that this is feasible in Africa. A study was undertaken in three hyperendemic onchocerciasis foci in Mali and Senegal where treatment has been given for 15 to 17 years. The results showed that only few infections remained in the human population and that transmission levels were everywhere below postulated thresholds for elimination. Treatment was subsequently stopped in test areas in each focus, and follow-up evaluations did not detect any recrudescence of infection or transmission. Hence, the study has provided the first evidence that onchocerciasis elimination is feasible with ivermectin treatment in some endemic foci in Africa. Although further studies are needed to determine to what extent these findings can be extrapolated to other areas in Africa, the principle of onchocerciasis elimination with ivermectin treatment has been established

    Density-dependent processes in the transmission of human onchocerciasis: relationship between the numbers of microfilariae ingested and successful larval development in the simuliid vector

    Get PDF
    A previous paper reported that the intake of Onchocerca volvulus microfilariae (mff) by different species of Simulium is essentially proportional to the parasite load in the skin of infected carriers. This paper examines the fate of the ingested mff in susceptible vectors to assess the relationship between parasite intake and infective larval output in blackfly species with and without well-developed cibarial armatures. Analysis is based on data from 3 onchocerciasis endemic areas: Guatemala (S. ochraceum s.l.), West Africa (S. damnosum s.l./S. sirbanum) and the Amazonian focus between South Venezuela and Northern Brazil (S. guianense and S. oyapockense s.l.). The data, which include published and unedited information collected in the field, record experimental studies of parasite uptake by wild flies maintained in captivity until the completion of the extrinsic incubation period. The relationship between L3 output (measured as the mean number of successful larvae/fly or, as the proportion of flies with infective larvae) and average microfilarial intake, was strongly non-linear. This non-linearity was best represented by a sigmoid function in case of armed simuliids (S. ochraceum s.l., S. oyapockense s.l.), or by a hyperbolic expression in that of unarmed flies (S. damnosum s.l., S. guianense). These results are compatible, respectively, with the patterns of ‘initial facilitation' and ‘limitation' described in culicid vectors of lymphatic filariases. A maximum mean number of 1-3 L3/fly was observed in all 4 vectors. It is concluded that O. volvulus larval development to the infective stage is regulated by density-dependent mechanisms acting at the early phase of microfilarial migration out of the blackfly's bloodmeal. Damage by the bucco-pharyngeal armature may also be density dependent. A hypothesis, based on this density dependence is forwarded to explain initial facilitation, so far only recorded in vectors with well-developed cibarial teeth. Our results provide quantitative support for the conjecture that chemotherapy alone is likely to have a greater impact on reducing onchocerciasis transmission in endemic areas where the main vector has a toothed fore-gut than in foci where the vectors have unarmed cibari

    Irreversible Effects of Ivermectin on Adult Parasites in Onchocerciasis Patients in the Onchocerciasis Control Programme in West Africa

    Get PDF
    Ivermectin is an effective drug for the treatment of human onchocerciasis, a disease caused by the parasitic filarial nematode Onchocerca volvulus. When humans are treated, the microfilariae normally found in the skin are rapidly and very nearly completely eliminated. Nonetheless, after a delay, microfilariae gradually reappear in the skin. This study is concerned with the causes of this delay. Hypotheses are tested by comparing the results of model calculations with skin microfilaria counts collected from 114 patients during a trial of five annual treatments in the focus area of Asubende, Ghana. The results obtained strongly suggest that annual treatment with ivermectin causes an irreversible decline in microfilariae production of ∼30%/treatment. This result has important implications for public health strategies designed to eliminate onchocerciasis as a significant health hazar
    • …
    corecore