6,361 research outputs found

    A giant ring-like structure at 0.78<z<0.86 displayed by GRBs

    Get PDF
    According to the cosmological principle, Universal large-scale structure is homogeneous and isotropic. The observable Universe, however, shows complex structures even on very large scales. The recent discoveries of structures significantly exceeding the transition scale of 370 Mpc pose a challenge to the cosmological principle. We report here the discovery of the largest regular formation in the observable Universe; a ring with a diameter of 1720 Mpc, displayed by 9 gamma ray bursts (GRBs), exceeding by a factor of five the transition scale to the homogeneous and isotropic distribution. The ring has a major diameter of 43o43^o and a minor diameter of 30o30^o at a distance of 2770 Mpc in the 0.78<z<0.86 redshift range, with a probability of 2×1062\times 10^{-6} of being the result of a random fluctuation in the GRB count rate. Evidence suggests that this feature is the projection of a shell onto the plane of the sky. Voids and string-like formations are common outcomes of large-scale structure. However, these structures have maximum sizes of 150 Mpc, which are an order of magnitude smaller than the observed GRB ring diameter. Evidence in support of the shell interpretation requires that temporal information of the transient GRBs be included in the analysis. This ring-shaped feature is large enough to contradict the cosmological principle. The physical mechanism responsible for causing it is unknown.Comment: Accepted for publication in MNRAS, 13 pages, 8 figures and 4 table

    Hairy Black Holes, Horizon Mass and Solitons

    Get PDF
    Properties of the horizon mass of hairy black holes are discussed with emphasis on certain subtle and initially unexpected features. A key property suggests that hairy black holes may be regarded as `bound states' of ordinary black holes without hair and colored solitons. This model is then used to predict the qualitative behavior of the horizon properties of hairy black holes, to provide a physical `explanation' of their instability and to put qualitative constraints on the end point configurations that result from this instability. The available numerical calculations support these predictions. Furthermore, the physical arguments are robust and should be applicable also in more complicated situations where detailed numerical work is yet to be carried out.Comment: 25 pages, 5 (new) figures. Revtex file. Final version to appear in CQ

    On smoothness of Black Saturns

    Get PDF
    We prove smoothness of the domain of outer communications (d.o.c.) of the Black Saturn solutions of Elvang and Figueras. We show that the metric on the d.o.c. extends smoothly across two disjoint event horizons with topology R x S^3 and R x S^1 x S^2. We establish stable causality of the d.o.c. when the Komar angular momentum of the spherical component of the horizon vanishes, and present numerical evidence for stable causality in general.Comment: 47 pages, 5 figure

    Mechanics of multidimensional isolated horizons

    Full text link
    Recently a multidimensional generalization of Isolated Horizon framework has been proposed by Lewandowski and Pawlowski (gr-qc/0410146). Therein the geometric description was easily generalized to higher dimensions and the structure of the constraints induced by the Einstein equations was analyzed. In particular, the geometric version of the zeroth law of the black hole thermodynamics was proved. In this work we show how the IH mechanics can be formulated in a dimension--independent fashion and derive the first law of BH thermodynamics for arbitrary dimensional IH. We also propose a definition of energy for non--rotating horizons.Comment: 25 pages, 4 figures (eps), last sections revised, acknowledgements and a section about the gauge invariance of introduced quantities added; typos corrected, footnote 4 on page 9 adde

    Quasi-local rotating black holes in higher dimension: geometry

    Full text link
    With a help of a generalized Raychaudhuri equation non-expanding null surfaces are studied in arbitrarily dimensional case. The definition and basic properties of non-expanding and isolated horizons known in the literature in the 4 and 3 dimensional cases are generalized. A local description of horizon's geometry is provided. The Zeroth Law of black hole thermodynamics is derived. The constraints have a similar structure to that of the 4 dimensional spacetime case. The geometry of a vacuum isolated horizon is determined by the induced metric and the rotation 1-form potential, local generalizations of the area and the angular momentum typically used in the stationary black hole solutions case.Comment: 32 pages, RevTex
    corecore